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Fluctuation-induced constraints on the observation of unbinding in a confined complex fluid
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An extensive study of the effect of fluctuations on the unbinding of an interface from a wall in a ternary
system is presented. The framework upon which the analysis is based is a linear functional renormalization
group scheme of the appropriate effective interface Hamiltonian. The interface model includes position-
dependent gradient coefficients, and their presence is shown to be equivalent to modifications of the bare
interface potential that are highly relevant in determining the renormalized critical behavior. We analyze the
modified interface potential in a mean-field-like way for both bare critical and first-order unbinding transitions
in order to highlight the key effects. We further perform a detailed study of the linearized renormalization
group equations identifying three fluctuation regimes and recovering earlier predictions for nonuniversal criti-
cal exponents. The surface phase diagram changes dramatically under renormalization with, most notably,
fluctuation-induced reentrant behavior. We show that in the revised phase diagram the unbound region is
limited in extent indicating that the opportunity for observing an unbinding transition in a confined complex
fluid is highly restricted.
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I. INTRODUCTION the case of simple fluids where a standard square-gradient
theory suffices, the appropriate model for ternary mixtures
There has been considerable recent interest in the chenmvolves higher order gradient terms that are mostly justified
istry and physics of complex fluids, mainly due to their wideon purely phenomenological grounds or derived from a
range of applications and the diversity of structures that magimple rigid shift ansatg12—14. However, partly motivated
be observed in these systems. The ubiquitous example isi®y the failure of this approach to correctly describe a free
ternary mixture of oil, water and surfactant or amphiphile for gj|-water interfacelas demonstrated ii6]), a controlled and
which the bulk phase behavior is well understdqadl Fur-  careful derivation of the Hamiltonian was recently presented,
thermore, due to the potentlal coexistence of three or MOI'fyading to an improved interface model for describing fluc-
bulk phases, these mixtures have attracted much attenthuating interfaces and membranes in complex fljigis10].
from th.e point of yiew of interfacigl critical phenomena and tha main new feature of the model is the presence of
unbinding or wetting phase transitiofts-7]. . position-dependent stiffness and rigidity coefficients highly
In recent work we have focused on confined ternary sys;, alogous to the discoveries of Fisher and [is] and
tems and analyzed pure surface effects due to the presencelpz'fsheret al. [16] for wetting in simple fluids. Perhaps the

a wall or substrat¢8—10. More specifically, we have pre- y ant i dient of th del is the interfacial
dicted the existence of an interface unbinding transition in gnostimportant ingredient of the modet 1S the intertacial po-
ential W(I), the form of which fully determines the mean-

semi-infinite geometry at three-phase coexistence of the oif, ) _ e

water, and microemulsion. At this transition the wall- €ld phase diagram. In particular, this is simply found by
microemulsion interface is wetted by either the oil-rich or the®PServing whether the global minimum of the potential is at
water-rich phase. This study is based upon a Ginzburg® finite or infinite value ofl, the first case referring to a
Landau(GL) free-energy functional of a single scalar order bound state while in the latter the interface is said to be
parameterg(r) representing the local concentration differ- unbound from the wall. _ _

ence between oil and water. The short-range wall-bulk inter- The results of this mean-field analysis for the wall-

action is accounted for via a surface density term, microemulsion interface are best summarized by referring to
Fig. 1, which is a schematic surface phase diagram as a func-
L= s+ wsd?+94(V )2, (1.1)  tion of the parametergs andwg for fixed bulk parameters at

three-phase coexistence. The generic behavior shown in the

which is characterized by three surface parameters. The péigure is not sensitive to the value gf. The diagram dem-
rameteru is the surface field or local chemical potential, onstrates that an unbinding transition can be induced either
while wg corresponds to the surface enhancement. Finallyby increasing the absolute value of the surface fieldich is
the presence of a local gradient is essential for correctly deassumed negative on physical grounds, see)|aterby de-
termining the boundary conditions when using the simplecreasing the value of the enhancement parameterThe
GL theory, and the corresponding surface paramgfeéias transition is typically found to be first-order in the lowg|
been associated with the chemical potential of the amregimef[first-order (FW) wetting phase boundafywhereas
phiphile at the wall7]. for larger |us] second-order or critical transitions are pre-

A powerful tool for studying unbinding transitions is an dicted [critical wetting (CW) phase boundaty The two re-
effective interface Hamiltonian, which is a functional of the gimes are separated by a tricritical po{itCP) that is also
thicknessl of the adsorbed surface layfrl]. In contrast to  the terminus for the two metastable limits associated with the
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which provides a useful guide to the importance of the
position-dependent gradient coefficients. Section IV deals
with the fully linearized RG study based on a standard
matching and rescaling procedure in the critical limit, from
which we identify three scaling regimes. Results are pre-
sented for the various phase boundaries, the different singu-
larities, and the critical exponents. In Sec. V we gauge the
effect of fluctuations on the first-order boundary of Fig. 1
BOUND and assemble the results to sketch a renormalized phase dia-

gram. This section also provides a summary of the implica-
tions of the RG theory for the phase behavior. We close the
paper by discussing the relevance of our results for simula-
tions and their applicability to other unbinding transitions in
W, ternary systems.

I

FIG. 1. Schematic mean-field phase diagram for the unbinding
of a wall-microemulsion interface at bulk three-phase coexistence.
First-order(FW) and continuousCW) unbinding phase boundaries
are shown by solid lines, and meet at the tricritical p6Irf€P). The A. Background

dashed line ML denotes the metastable limit of the unbound state. . . . .
The functional RG approach for wetting transitions is

first-order transitior{17]. For the unbound state, this meta- based on an effective interfacial Hamiltoniafy,[1(y)],
stable limit(ML) is given by the dashed line ML. where l(y) measures the distance of the interface from a
Experimental observations of the critical wetting transi-wall, assumed to be in the plaze=0. With this notationy
tion predicted above are unlikely due to the presence of longdenotes thed— 1)-component vector specifying a point on
range van der Waals forces; however, in such systems a firshe wall. This Hamiltonian may be derived systematically
order transition is still predicted to be observalpd. In  from the underlying bulk order-parameter theory by intro-
contrast, Monte Carlo simulations may provide quantitativeducing acrossing constraintefinition of the collective co-
tests of the theoretical results for critical unbinding. Never-ordinatel and taking a trace over the remaining degrees of
theless, mean-field results are often a poor guide and at moeedom([15,16,2Q. This nontrivial formalism was recently
qualitatively correct since they ignore the effect of fluctua-implemented for ternary systems and the following Hamil-
tions. Therefore it is important to ascertain the importance ofonian was obtaine{B]
thermally induced fluctuations on the overall phase behavior
in complex fluids with short-range interactions. It is this is- _ 1 21y2, 1 2
sue we address in the present article. H'[l]_f dy{2 (V)™ 22 (D VD)™ W(D}-
We incorporate fluctuations by employing a linear func- 2.9
tional renormalization groupRG) treatment of the effective
interface modef15,18—2Q. In this paper we apply the RG to We note that this Hamiltonian model is valid for any situa-
provide a thorough understanding of the fluctuation effectstion where there are interactions between two surfaces in a
In particular, the position dependence of the gradient terméernary amphiphilic system; however, we concentrate here
in the model proves to be highly relevant in determining theon the case of an interface unbinding from a wall. We further
critical behavior, in analogy with thimstability mechanism assume three-phase coexistence with the middle or micro-
found for simple fluids, leading to critical transitions being €mulsion phase stable in the bulk, i.e, in the limit =, and
driven fluctuation-induced first-ordg21,20,23. We demon- @ negative surface fielgs such that the denser water phase
strate that for complex fluids the effect is even more drastids adsorbed by the substrdts3].
and gives rise to strong constraints on the possible observa- The interface potentialV(l), which describes the interac-
tion of the unbinding transition in confined systems. Consefion of the interface with the wall, and the position-
quently, the mean-field phase diagram of Fig. 1 is signifi-dependenturvatureandstifinesscoefficients«(l) and (1)
cantly modified due to fluctuations and the revised phasé&espectively, can be expressed in terms of the planar con-
diagram is one of our main results. strained order-parameter profi,., full expressions are
The remainder of the paper is organized as follows. Ingiven in Ref.[9]. The gradient coefficients(l) and (1)
Sec. Il we recall the main ingredients of the effective inter-contain explicitl-dependent pieces) «(l)=«(l)—«., and
face Hamiltonian for a ternary system with an external surAX(1)=2(1)—X.., respectively, where the subscriptre-
face. We describe the generic expressions for both the intefers to afree interface between the adsorbed phase and the
face potential and the gradient coefficients near criticamiddle phase. From this definition we note that the position-
unbinding and introduce the functional RG scheme for thedependent contributions«(l) andA(l) vanish in the limit
model. This reveals that the presence of position-dependehi—.
gradient coefficients has the same effect as modifying the To enable progress it is convenient to employ a piecewise
bare interface potential. In Sec. Il we analyze the modifiedparabolic(or triple parabolamodel and approximate the GL
potential in a mean-field-like way near the critical transition, bulk free-energy density by three parabola$ While this

II. INTERFACE MODEL AND FUNCTIONAL
RENORMALIZATION
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approach facilitates quantitative computations, it is noted The calculation of the coefficients;, andk;j, is non-
that similar results are also anticipated from&model[24].  trivial, even in the triple parabola approximation. Neverthe-
For complex fluids one identifigsvo length scalesB; > and  less, it is straightforward to find a zeroth-order approxima-
B, say, which control the domain size of coherent oil andtion, leading to the following coefficien{®,25]

water regions, and the exponential tails in the order-

parameter profile. Within this model the bare binding poten- Kono=ka7,  Konr=ker,

tial is found to take the general forf®,25]

Kior= —ks7,  Kio1=Kar, (2.7
W= 2 (Wijo—wjjsl)exd — (i B+ B, Koag~Ks,  Koar=Ks,
Gizd (0 Vithallk=0.
where we assume tha¥/(1)—0 in the limit of | —o. For B. Renormalization group equations

fixed bulk parameters, which is relevant for our study of  Our task is now to implement a functional RG treatment
unbinding, the values 0B, and B, are fixed and, to allow of the interface Hamiltoniari2.1), an outline of which was
discussion relating to earlier result8,9], we assume that introduced in[9]. Here, we present a more detailed analysis

B2<PB1<2B,<PBp+p1<---, without loss of generality. and discuss the linear RG flow equations.
Similar expansions are found for thelependent parts of the  Following otherd19,21], we write our Hamiltonian in the
stiffness and rigidity coefficients, i.e., form H,[1]1="Ho[l ]+ Hwl] whereHy[I] is the free part
AS(D= > (sjo—Sijhexd —(iB1+]B)I] Ho[']zf dy{3 k.(V2)2+33..(V)?}, (2.9
(i47%0)

i,j=0
(2.3 andH,[1] the interaction or wetting part

and Holl]= J dy{3A k(1) (V2)2+ ZAS(1)(VD)2+W(I)}.

(2.9

[’

Ar()=" 2 (kijo—kijsexd —(iB1+iB)I].
(i';jioo) Implicitly contained within these definitions is a small-scale
(2.4  cutoff A~ (or equivalently a momentum cutof).
The construction of the functional RG has been well ex-
To explore the generic behavior of the set of coefficientsp|ained elsewherg18—21,26,27and so we restrict ourselves
appearing in these expansions, we introduce the parameteryg g prief summary of the pertinent points here. The fluctu-
to denote the distancgn the space of surface paramejers ating field is divided into two partd(y)=I<(y)+17(y),
from the unbinding transition such that 0 corresponds to \here | < represent the small-wave-number or large-scale
a bound state and>0 to an unbound one. With this defini- f,ctuations and™ the large-wave-number or small-scale
tion in mind, the mean-field critical transition is controlled f|,ctuations. Hencé< contains all Fourier components bf
by ~—07. The leading order results for the potential in the with wave numbers in the range<gk|<A/b and|” those
triple parabola approximation can then be writter{@25]  \yith A/b<|k|<A, whereb=eg' is the spatial rescaling fac-
tor (see below The fluctuations™ are integrated out result-
ing in an effective Hamiltoniar|[| =], for the large-scale
fluctuations alone. This intermediate, unrescaled, renormal-
ized Hamiltonian is defined via the partial trace

Wo10~ W1 T, W100™~ —WaT,
Wij1=0(Vi,j),  Woyg=Ws, (2.9
where allw; are positive parameters that may be assumed

1
constant in the vicinity of the transition. exp{—BH|[17]}= Nf DI~exp—BH,[I=+171},
Similarly, the parabolic approximation yields

(2.10
S010~S17: So11~ S2 7, with 8= 1/(kgT), and whereN is an appropriately defined
normalization factor. The crucial assumption of the linear
S100~ ~S3T,  S101~SaT, (26 RG is that the perturbatiofity, is small such that it is ad-
equate, when taking the partial trace in E210), to expand
S020™ S5 S0p21~ S6 » in Hy and retain only the first-order term yielding
for the stiffness coefficient9,25], with strictly positive pa- HI=1=Ho[ 1 =]+ R{Hw[I =+171}, (2.11

rameterss; . We note that the first coefficient in the set of
Sij1 is nonzero, we will show below that this can have dra-where R=N"1[DI”exp—BH,[I"]} is a linear operator
matic consequences for the unbinding transitions. normalized byR{1}=1. To evaluate this term we employ
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the techniques of Jin and Fishigdl] developed specifically
for the situation where a spatially varying stiffness coeffi-
cient is present. The idea is to expaH¢, to quadratic order
in 1”7, setb=e® and conside®t—0 so as to derive differ-
ential flow equations.

PHYSICAL REVIEW B4 011604

Finally, we must rescale to bring the momentum cut-offgng

back to its original value. In particular it is appropriate to
apply the rescalin26,27

y—y' =ylb, 1(y)—=1'(y)=I(y)/b¢,  (2.12

where {=(3—d)/2. It is then straightforward to obtain the
set of RG flow equations. First, for the bulk part of the ri-
gidity we find
ng)
dt

=—2«, (2.13

which yields k" =e?«,,, demonstrating thak., simply
flows to zero under renormalization. Second, the position
dependent parts of the gradient coefficients, M (1) and

Ak(l), evolve according to the following equations
gAZ () IaAE“’(I) Q g*AZ (1)
o TA TS roate B a2
(2.19
and
A kO(1) A kO(1)
_— (t) _— 7
pr 2A V() + T
. Q ?A k(1) (215
S.tr.A%72 g2 T
where, for brevity, we have introduced
kgTA@3)
= 1 (2.1
(4m)@-Diep E(d—l)}

In contrast to the above, the flow equation for the interfac
potential depends explicitly on the other renormalized quan
tities, with

WM

a

(t)

d- 1w M 2
(d=v S S+ kA% 2

92W®

B +AZASO L A4A O |
d

X

(2.17

The solutions of these flow equations can most easily be

found by decoupling the flow oV® from that of AZ () and
AW, The details of this procedure for general dimensidns
are given in the Appendix, here we only quote the closed
form solutions ind=3. From Eqs.(2.14 and (2.15), it is
evident that bothrAS® and Ax® will evolve in a purely
diffusive way, with explicit solutions

1 0
ASO(y=———[ dI'as©x’
() 2rgn)) (")
xexg —(I1—1")212g%(1)], (2.18
1 0
AkO()= ——— I"A (1"
O gl A
xexg —(I1—1")212g%(1)], (2.19

where the width of the Gaussian convolution is given by

|

Furthermore, one finds that the solution W/ is of a simi-
lar form, with

_ keT

S e2 4k A2
S 4 kA2

g(t)

(2.20

2t

V2mg(t)

jo dI" WO Yexd — (1—17)2/2g2(1)],
(2.21)

which means thatV(V renormalizes precisely as in the case
of constant gradient coefficient8,19|, except that the initial
bare potentiaW(%)(1) is replaced by the modified expression

w ()=

~ kgT
w<°>(|)=w<°>(|)+8m f,AS (1)
kgTA2 o . ©
g |1 S f A1),
oe) K:)o
(2.22
wheref, is given by
S+ kA2
oS reaze®) (223

Jor the study of critical wetting is large and thus{v(®)

essentially differs fromw(® only by fixed terms propor-
tional to AS(® andA (. Hence at a simple level the effect
of the position-dependent gradient coefficients can be gauged
from this modified bare potentigéee Sec. I). Furthermore,

it is apparent from Eq(2.22 that terms inAS () and A «(©)
[see Egs(2.3) and (2.4)] can compete with terms ikV(®
[Eq. (2.2)] and hence strongly influence the critical behavior.
This resembles the situation in simple fluids where it leads to
a mechanism destabilizing the critical transitidrb,20,21.

IIl. MEAN-FIELD ANALYSIS OF MODIFIED BARE
POTENTIAL FOR CRITICAL UNBINDING

- Before we explicitly calculate the renormalized potential

by performing the convolution in Eq2.21), we first analyze,

at a mean-field level, the modified bare potentfe(®)(l)
given in Eq.(2.22. This will give us a good estimate of the
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effect of fluctuations on the bare critical transition. suggests that the coefficientsand g, are several orders of
To begin, it is clear from the above results that this modi-magnitude smaller than their counterparts in the first term.
fied potential can be written in the form Furthermore, an extensive numerical study indicates that this

term has no qualitative effect on the phase diagram. We can
S0) 1 2 ~ )~ . ) further estimate the quantitative effect by noting that for
W= = (Wijo—wijrhexp — (i B1+] B2)1], 1<e<2 we can crudely approximaie ¢ by the interpo-

oo

(i+i>0) lated formulae™€'~(2—€)e™'+ (e—1)e 2. Thus upon set-
3.1 ting e= B, /8, we identify that the main effect of this term is

a ‘“renormalization” of the other parametersy(, r, etc)

with, for example,q;—q;+(2—81/82)q, and gq;—Qqs
~ (1 kgT +7(B1/B>,—1)g,. Hence we anticipate that the only effect
Wijm = Wijm+ mftsijm of the second exponential term is to slightly shift the phase

” boundaries predicted below.
S Therefore, to obtain the general phase behavior it suffices

( 1-e 2— Tft) Kijm» (3.2 to minimize the potential
KOO

where the modified coefficients are

kgTA?

8K,

GO 1y =21 — - _ -2l
for m=0,1. In comparison with the initial bare potential, the WHh=7(1~ahe "+ (r—qsl)e =, (3.5
most notable feature of E¢3.D) is the presence of nonzero o jnspect the location of the global minimum as a function
terms varying asexi - (i, 5;)l], highly analogous to the of 7, q; andqs. Recall, 7 measures the deviation from the

d|scover|e_s f(?r 5|mple. fluid$15,20,21. HB\:Y)EVBI}; :n the bare critical transition, i.e., the transition determined by the
present snuau_on, the first Of_ thgse _termﬂNOlllg_ 2, be- potential W) (I). We further ser =1 without loss of gen-
comes thdeading-ordercontribution in the modified poten-  grajity and, although our main interest is for the case of
tial, and, y_nsurprlsmgly, this drastically alters the pred'Ct'O”Spositiveql andgs, we do consider both positive and nega-
for the critical behavior. tive values of these parameters in order to take into account
In Wh?gtf_o"OWS we will frequently drop the terms con- 5 hossible shift due tq, (see above For clarity we consider
taininge™ < in the above expressions since they vanish rapgjices through the phase diagram with fixggor fixed g5,

idly when t becomes largéas is the case in the regime of o4 cojlect our results together at the end of this section.
interesj. Near critical wetting, we can combine the results

2.5—(2.7) and write ~
2.5-2.1 A. (7,9,) diagrams for fixed qs

Wo10= 7= T(Wy + €18+ K1), We start with a comprehensive study of the potential for
fixed g3. The most notable feature is that for positiyg the
VV011:~TQ15 7(C1S,+ CK»), leading-order term will change sign as compared to the origi-

nal potential. Clearly, this will have a dramatic effect on the
phase behavior, and in Fig. 2 we present some typical ex-
amples of phase diagrams showigg fixed zero, negative,
and positive. Further details are provided below.

Let us first consider the simplest case whgr=0 [Fig.
~ 2(a)], for which the analysis is relatively straightforward. We
Wogo=T=W3+ €185+ CoKs>0, distinguish four regions, separated by first-order or continu-
ous phase boundaries. Whenand g, are both positive,
WO(1) has a minimum at finité corresponding to a bound
etc., wherec, ,q; ,p,r are positive constants. Note that the (B) State. Asq;—0, however, the location of this minimum
first four coefficients are proportional toand hence vanish diverges according to

Wi0p= — TP=— 7(W5+C1S3+CoKs3), (3.3

W101= T02=7(C1S4+ C2Ky),

Wo21=03=C1Sg+ Cokg>0,

on approach to the mean-field critical phase boundary. Thus, 1
after a rescaling of the thicknessthe modified bare poten- |~—, (3.6
tial reads 41

such that there is a critical unbinding transition fipr=0,

| 7>0 (dotted ling. Indeed, in the upper left corner of the
+(r—gghe ?, (3.4  diagram, all terms in the potential are positive and the inter-
face will be unbound(UB). In addition, when taking

which clearly demonstrates the presence of the new Ieadingf;_}o+ while keepinga, strictly positive, the thickness also
order term with coefficient|;, which, crucially, has the op- continuously divergeslwith '

posite sign to the original leading order term. In the analysis
that follows we will typically ignore the second exponential 1
I~In( ) ,

WO =r(1-ail)e' = 7(p+agl)e AP

term in Eq.(3.4). This is partly based on explicit evaluation
of the various terms within the triple parabola model, which

= (3.7

|7l
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-0.4 01

1
. —_— — pla1—1)/ay
T T e . 3.8
a, =T (3.9

T
UB | B We further can identify _the two metastable limits connected

to the first-order transition, these are shown by the dashed
)o.os - . lines. By considering just the tail of the potential it is clear
that the lineq; =0 marks the point where the extremum at

| = changes its character from being a local minimum to a

local maximum, and hence corresponds to the metastable

limit for the unbound state. For the other metastable limit we
find

(a

-0.72

-05 0 0.5 ~ 2
0.8 . T . ™ML= — q_eil/ql- (3.9
1

N
S

i ] Within this phase diagram the origin acts as a multicritical
UB i B point.
For negativeqs, the phase diagram remains qualitatively
(b) 0 unchanged, a representative example is given in Kly.far
| gs= —0.25. However, due to the presence of thgerm the
B : B UB | computation of the first-order boundary is a little more in-
|
|
1

volved and analytic results are more complex, although still
attainable. For example, we obtain

-0.8
N ';- = — HQ3—_(]:g|()e_|0
i q 0 a: ,
’

P B | where |o=[0; +03—{(d1—0ds) (41— U3+ 40103)}"/*]/20,03
“-\C\LP again represents the thickness at the transition point. We re-
__’___Ej?}-&m frain from calculating the metastable limit of the bound state
(c) o ———— fm————————— in this case, although numerical studies suggest it is likely to

|

|

|

|

|

1

(3.10

0.01

S
N
SRN— Y
o
N
o
N

be of the same form as E@.10 for smallq;.

It is much more interesting to discuss the change in the
B UB 1 diagram asq; becomes positive. As demonstrated in Fig.
2(c) for q3=0.25, a very different situation is found, includ-
A . ing some extra transitions. We start by noting that the critical
B transition found in the previous cases wher0~ for q;

FIG. 2. (1,q;) mean-field phase diagrams fé® q;=0, (b) <0 is lost, but is replaced by a first-order transition at posi-
gs3=—0.25, and(c) g3=0.25, showing unbound@UB) and bound tive, smallr values(note the enlarged scaléThis transition

-0.01

(B) regions. The phase boundaries are shown by ddttdtical) |ine terminates at aritical end point Pwith coordinates

and solid (first-ordey lines, while the dashed lines denote meta-

stable limits. The open circle ifa) and(b) represents a multicritical =0. 7=da.exd —(1+0-)/d-]. 3.1

point. Further, the dashed-dotted line(@) marks a thin-thick tran- 9 ' Asexil — ( d3)/0s] 31D
sition, with P and P* both being critical end points. Note that in this case there is only one critical phase bound-

ary and that the origin is no longer a multicritical point.
and hence another critical boundary is identified. SimilarlyBeyondP into the bound region, we further findtlin-thick
whenr andq, are both negative, the interface is also boundtranSItlon boundar)(dashed—_d_otted I|r)ew_h|c*h, n turn, ex-
. . . -~ . tends fromP to a second critical end poif* with coordi-
with a continuous transition for— 0~ and where the inter-

face again diverges according to Eg.7). Hence the dotted nates
line 7=0 represents a continuous phase boundary fayall ds ~

In the final quadrant of the diagram the interplay between ~ 41=77 aqs T (1+4qgz)exd —(1+293)/qs],
positive and negative contributions W(©)(l) suggests the (3.12

possibility of a first-order transition. By minimizing the po-

tential in this regime, we indeed find a first-order unbindingwhere the two thicknessek, andl, say, become identical.
transition represented in Fig.(@ by the solid line. The Finally, another first-order unbinding transition is found in
thicknessl, of the adsorbed layer at the point of the transi-the bottom right corner of the figurevhere 7<0 andq;

tion, i.e., prior to the jump to infinity, is given bly=1/q;  >0). Although not apparent on the scale shown, this phase
—1, and the transition boundary reads boundary bends back to larger valuesggffor large, nega-

011604-6



FLUCTUATION-INDUCED CONSTRAINTS ON THE . .. PHYSICAL REVIEW E 64 011604

0.15

stiffness coefficient, as studied by Fisher and[1#] and Jin
and Fishef20,21. For negativeg; the bare mean-field pre-
dictions are not affected by the stiffness term resulting in a
critical transition whenr— 0~ with a divergence given by
Eqg. (3.7. When gq3>0, on the other hand, fluctuation-
induced first-order behavior is observed. The transition
boundary can easily be computed and reads

T

() ) ———

B B ' To=0ge (43714, (3.13

) ) with the thickness at the transition point given ky= 1/q5

-1 ] 1 +1. Note again the exponential behavior in Eg.13 and
that the origin is a tricritical point. As before, the first-order
transition is accompanied by two metastable limits, one of

which is given by7=0, whereas the other is

-0.156

‘TuL = 20zexf — (303+2)/2q]. (3.14

The inclusion of a negativg, value does not essentially
alter the physics, hence the resulting phase diadgsa® Fig.
B B ] 3(b)] strongly resembles the previous one, with only small
guantitative modifications.
CI3 On the other hand, for positivg;, we predict significant
-0.15 . . changes in the diagram, as exemplified in Fig).3The most

striking feature is that for>0 the interface is now always
015 — ; ; 7 bound, which results from the change in sign of the leading
T J order term in the potential. The first-order unbinding transi-

B B / ] tion seen in the previous two cases ceases to exist and is
replaced by a thin-thick transitioflashed-dotted line This
boundary does not originate at the origin but at the p&int
with coordinates

! ~_
q3_1_4q1! 7-_0: (313
-015 . . When.q1<0..25.. Forq,=0.25 there is no longer a thin-thick
-1 0 1 transition within the phase space.

We find a small unbound region in the phase diagram that
ives rise to reentrant behavior. In particular, if we decrease
g;=—0.1, and(c) gq;=0.1, showing unboun@JB) and boundB) 9 P

regions. The phase boundaries are shown by ddttgtical) and 7 from a positive valugwith g;<<0) we find that th~e thick-
solid (first-orde) lines, while the dashed lines denote metastableness of the adsorbed layer continuously diverges-a®™
limits. In each case, the origin is a tricritical point. (), the thin-  [with | again given by Eq(3.7)], therefore the dotted line
thick transition line, originating at the poirR, is given by the represents a critical unbinding transition. By further lowering

dashed-dotted line. 7 we return to a bound state via a first-order transitisolid
line). Albeit hardly visible in the figure, the reentrant behav-
tive 7 (as will be clarified at the end of this sectjoyielding  ior is also observed for slightly positive, with the borders
the possibility ofreentrantbehavior. As before, the dashed of the unbound region in this case given by two first-order
lines correspond to the metastable limits for the unboundransitions(so that the origin remains a tricritical poinSpe-
state. cifically, we find that this occurs in the range<@;<q;.
This behavior is more clearly seen in a three-dimensional

phase diagram plotted in the variabies q;, and g that
summarizes our results of this section. This is shown sche-
To gain a complete insight into the phase behavior prematically in Fig. 4 where, for convenience, we restrict our-
scribed by the potentiah(©)(1), it is instructive to repeat the selves to the unbinding transitions without indicating the
above analysis for fixed; and to briefly comment on typical thin-thick transition surfaces. It is apparent from this figure
(7,93) diagrams. that forq, andqs positive (which is the relevant cageary-

The caseg; =0, shown in Fig. ), is directly analogous ing 7 from a negative value to a positive one either yields no
to the situation for simple fluids with a position-dependentphase transition with the interface always bound, or gives

FIG. 3. (r,q;) mean-field phase diagrams fé& q;=0, (b)

B. (7,q3) diagrams for fixed g,

011604-7
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whereX,, is assumed positive. At this scale the correlation
length parallel to the interfacé;, will also be of order one
and hence from Eq(2.12 the original parallel correlation

length isguwe‘T. At critical unbinding this correlation length
diverges, sa'—«. Further, applying mean-field theory at
the matching point yields a renormalized interfacial thick-
nessl’ and since there is no rescaling of perpendicular dis-
tances ind=3 [see Eq(2.12], we obtain the original layer
thickness(1)=1".

The convolution(2.21) for the potential is defined over
the range—»<|<, whereas our expressions fav(®)(|)
have only been given thus far fo=0. In practice the un-
= surfaces binding fluid interface cannot pass through the walzat0

so one should formally include a hard-wall restriction such
UNBOUND that W is infinite for | <0. However, the linearized RG can-

not properly handle a potential that diverges to infinity; so,

instead, we settle for the soft-wall restrictioh®)(l)=c

FIG. 4. Schematic three-dimensional surface phase diagram i>0 for | =0. Monte Carlo S|mulat|0n_s of a Iatt|_ce version of

e n ) o the interface model suggest that this approximation has no
the variablesr, q,, andqs. The critical and first-order unbinding  gigpificant effect on the results, with both hard- and soft-wall
transition surfaces are indicated by dashed and solid lines, respefastrictions yielding the same critical behavj@g].
tively. We must further assign values fais ©(1) and A <©)(1)
for | <0. Here we follow the lead of Jin and Fisher and adopt

!

first-order
surfaces ~

BOUND

P
A
s
2z

/
R
/

/
A
,

two consecutive first-order transitions from bound to un-y choiceAS (1) = A x©)(1)=0 for |<0. This means that
bound, and back to bound again. Thus our mean-field analy;_~ . . . o N

) o L . ’the interface has fixed stiffness and rigidity contributions,
sis of the modified bare potential indicates that the bare criti- . 7

o NN o . and «.,, respectively, forl<O but varies in the way de-

cal unbinding transition is lost under renormalization and in__ . . .

. . ! T . . scribed by Eqgs(2.3) and (2.4) for positive I. Alternative
this region of the phase diagram itis difficéttr impossible choices are possible but will typically be equivalent to small
for the interface to become unbound. We expect the analysi$ P ypicaty q

of this section to be a good guide to the renormalized behavr-nOOIIflcatlons to the soft wall contributionfor the binding

ior provided the fluctuation effects are wefd9,21; moti- potential[21], hence we do not pursue these any further here.

vated by this study we now return to the functional RG to .At this_point the renormaliz_ed pote_ntial can be obtained
investigate the full range of fluctuation behavior quite straightforwardly by solving the integral in E@.21)
' by the method of steepest descent. To analyze the different

regimes it is very convenient to divide the modified bare

IV. RENORMALIZATION-GROUP RESULTS potentialW()(1) into its constituent parts

FOR CRITICAL UNBINDING

A rigorous application of the RG for the bare critical wet- WOy =W,(I) +We, (1) +Wq (1), 4.3
ting transition essentially involves performing the convolu-
tion in Eq. (2.2, which is the issue we now address. In where we define
order to investigate unbinding phenomena using the RG we
must implement a matching procedure since, as noted by
Fisher and Huse, there is no nontrivial fixed point represent- W(CO)(|):[
ing the unbinding transitiofil9]. In particular we renormal-
ize up to a scaleé’ at which the curvature of the renormal-
ized potential at the minimum is of order one, at this point T(1—-qg.he !, >0
one may expand the potential around the minimum and use Wé?“): (4.9
mean-field theory to estimate the correlation lengjthThus 0. 1<0,
one finds the location of the minimurh! say, andt™ from

(of |<0

0, >0, @4

the requirements and
WO (1—qg3l)e 2, >0
N ) ©)(1)=
a o (41 W (D=1, 1<0. 49
and We further note that whenis large, as is relevant for study-
ing critical unbinding, the width of the convolutiog?(t),
22WhH behaves ag?(t)~2wt. Here w is the capillary parameter
pE ~3., (42 given byw=KkeT/(4mX.£), with &=, " the bulk corre-
It lation length of the adsorbed phase.
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FLUCTUATION-INDUCED CONSTRAINTS ON THE . .. PHYSICAL REVIEW E 64 011604

We first consider the renormalization qu(l), which 1-qy(1T—20t")
: - S~ exf (2+4w)t"—211],
can be written explicitly as =il = 20t'-1) A ( ) ]
e20 (4.19

(t) — * ’ _ ’ N1 —1)\2
Wa, (D) fo d'(1=aq)exd =1"=(I"=D%Yaot]. 00 which we can determing” andt'. Doing so we find

(4.77  that the ansatt>4wt is justified only forow<3 (which we
denote as regime,ljust as in the case of earlier RG studies
The exponent in this integral is maximizedlat| —2wt, so  [19,21]. We further define the renormalized singular part of
that forl>2wt the integral is dominated by the saddle pointthe potentiaF ;= e—ZtTW(tT)U 1), which in this regime can be

V4wt

atl, yielding written as
WO~ 1—gy(1 — 20t) Je@* ), (4.9 Fo=—[1+q re 3ot +Mjgtat’ -2 (4.16
Conversely, wherl<2wt the integral in Eq.(4.7) will be  From this expression we observe tifag<0 wheng;7>0
dominated by its contribution near zero that gives (i.e., forq;<0,7<0 and forg;>0,7>0). In the quadrant
- 0,<0,7>0 all terms in Eq.(4.13 are positive(for gs=0)
WO (1)~ 1 T 1— d1 2t~ 12140t and so the interface is unbound in this region. As a result we
a1 Jamot 1— 120t 1-12wt ’ distinguish two different critical unbinding transitions, one

(4.9  of which occurs for[7]—0 and the other fog;—0" and

. 7>0.
We thus see that the renormalized, (1) decays exponen- e genote the singularities of the first of these transitions
tla”y for | >2wt, while for | <2wt it is a Gaussian. Argumg using a Superscript * For examp|e, the th|Ckne$§ of the

along the same lines, we find that wetting layer behaves as
WP (D ~[1-qs(l —4wt)]e@ 42 (4.10 1420 [ 2 a |
<I>*~1_2w Inﬁ—ln 1+1_ In?+-~ ,
> [ < T
for | >4wt, while for | <4wt .17
W)~ ! - 1— 9 2t 174t as [71—0 and where the dots represent noncritical terms.
93 VAot 2= 112wt 2= 12wt Note that the presence af; only introduces a subsidiary

(41D |nIn[q singularity. The result for the parallel correlation

. . | h
Lastly, renormalizing the wall-part of the potential, we find ength reads

T|I-U(l-w
¢ 2ut . & ~ 710, (4.18
W(t)(l)~ g2t 1%/4wt (4.12 _ _ N
¢ Varot | which yields the usual critical exponent =1/(1—-w) for

regime 1[15,19,21].
for all I>0. To elucidate the renormalized transition behav- The singularities found for the other critical transition,
ior we now analyze the various fluctuation regimes distin-i.e., for q;—0", are fundamentally different. Indeed, even

guished by the value of the capillary parameter on a mean-field level, we found that the thickness diverged
in an algebraic fashiofsee Eq(3.6)] rather than logarithmi-
A. Regime I: Weak fluctuations cally, and this is again found in the renormalized behavior.

In particular, using a superscript to denote singularities

- We pegin by_ con_sideringtthe gake4wt. It is clear by_ associated with this transition, we find for the thickness
inspection that in this case/"(1) is a higher-order contri-

bution and so at leading orders we have 1

1+ —
d1

2

[

7Q1

2w
+——1In

i (4.19

(Y%= 2+ w
W(t)(|)~';[1_q1(|_Zwt)]e(2+w)t—l 2—w
+[1-qgs(l —4wt)]e@H4)lt=2 (413  This behavior has been determined using only the first expo-

o o ) nential in Eq.(4.13 that seems reasonable for0. Explicit
We initially concentrate on obtaining the renormalized phasgg|culations reveal that including the second exponential in
diagram for the situation whem;=0. Upon using the the potential only leads to a small correction to the above
matching technique we obtain from E@.1) and(4.2) result of the formg; e Y1, The correlation length for this

transition growsexponentiallyfast as described by
e, (414

- -2
T%L—ql(lT—Zth—l) &= (ra,)~ "ex] 61(1+1/q1)], (4.20
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where §,=1/(2— w) and, '[hel’efore]/”X:OC. transitions forg, in the range 68<q;<f(w)ds;. Heref(w) is

As in the mean-field phase diagram a first-order transitioran unwieldily complicated function ob that displays sur-
is predicted in the regiog,>0,7<0 going from bound |7/  Prisingly simple behavior such thé{w)—1 aso—0 and

~ ~ =

large) to unbound (7| small). The axis7=0 remains a f(w)=1 for}?f‘”i.l/tz' F(;)r f'i(edq?fgg")%bwe %retdlcta
second-order phase boundary with the same critical behavigi-duence of two first-or er~r.an5| '9 om bound to un-
as predicted whemj;<0, i.e., Eqs(4.17) and (4.18. We bound, and back to bouhas 7 is varied from zero to large
locate the first-order phase boundary by setfigg:0 in Eq.  Negative values. . _ _ _
(4.16), and find that the layer thickness just prior to the tran-  Finally, asq,—0" we still predict a second-order transi-
sition is given by tion providedr> 7. For this transition it is again essentially
only the first exponential term in E¢4.13 that is important
and so we predict the same critical singularities as found for
the g3=0 case described above. In particular, the layer
thickness(1)* is given by Eq.(4.19 and V||X=OO.

°[}

)-I—wlnzx, (4.21)
1

1
(I)0=(l+2w)(

for smallqg;. Likewise, one finds
B. Regime II: Intermediate fluctuations

&jo~ VS, el-an/ay, (4.22
The second regime is given wheéis restricted such that
Using these results we obtain the transition boundary 2wt<|<4wt. In this regime, the interface potential is
~ (Z)e? - K(1/20t
0=~ g, A (me)dma)/al, 423 WO~ 71— gyl - 200)]e® O+ Kot 7 ) gt
(4.25

asq;—0". We note that all of the above reduce to their

mean-field counterparts in the limib—0+. The q3=0 where VA7 wK (x) = 1/(2—x)[1— _
i . . ' . N, = g3/(2—x)]+c/x. Forq
phase diagram, incorporating all of these results, is quallta-:0 it is sufficient to consideh((l/Zcit)wK constant in ordger

tively identical to the corresponding mean-field diagi@®@e fing the leading order critical behavior. The minimum and

Fig. 2(@)]. : ;
The above analysis becomes more involveddgr 0 al- curvature matching formulag.1) and (4.2) yield

though analytic progress is possible. In particularg4& 0 ~ + +
the phase diagram remains unchanged with leading order Al =20t —1)]

critical behavior identical to thg;=0 case described above. K|t

For example, the layer thickne@$* for the transition when =—exd — (I"=20t")?/4t"] (426
[7|—0 is still given by Eq.(4.17) up to corrections of the 20t

form In[1~|—q3ln(rr|‘1)] so that the critical exponents are un- and
changed. Inspection of E¢4.13 reveals that foig;<0 the

contribution from the second exponential is always positive exg!T—(2+ wth]S.,
and so it is no surprise that tlig=0 andq;<0 behaviors
are qualitatively the same. _ K t2

For g3>0 the situation is more complicated as already ~11-qy(1"-20t™-2)]+ —— —T—ll
suggested by Fig. 2. In this case the additional exponential 20t 20t
contribution related ta; is a destabilizing factor, in particu- xex] — (11— 20t /4wt . (4.27)

lar when|7| is small. In analogy with the earlier study of

Fisher-Jin this leads to the critical transitions along the Solving these equations for largeeveals that for transitions
=0 axis being driven fluctuation-induced first-order with the associated with vanishing one hasl '~ \8wt', while q;

corresponding phase boundaries being shifted,te<0 re-  —O0 transitions havé'~(2+ )t". This latter behavior is
gions of the phase diagram. Fg;<<O there is always a also found in regime | since only the first exponential term is

first-order phase boundary that terminates at the goinith ~ required for determining the critical behavior. Thus the re-
coordinates sults of regime Il are valid whenever H20<2.
Associated with these two limits we again identify two

~ qs | % critical transitions. First, whefr| — 0, the thickness diverges
4:=0, 7= rp=zx(2— ex — 05(1+ 1/ ], cr = 9
(4.29
V8w 1
where 0,=[1-3/(2w)]/(1-2w) and 6O;=(1—w)/(1 <|>*w—2|n — 1, (4.289
—2w). Qualitatively Fig. Zc) provides an accurate represen- (\/5— \/E) 7]

tation of the phase diagram in this regime. This is also true
for g;>0 for which we identify reentrant behavior for fixed with leading order corrections ad(In[In([7])]). We further
g, sufficiently large. Explicit calculations reveal no phasefind
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s
2Vwq, (or2) 2 °
g

Vwl8

q

2*

(a)
(4.29

and thusyf = 1/(y2— \w)? in agreement with standard criti-
cal wetting results for regime [119]. For the other critical
transition * we recall from above that the dominant singular
behavior is determined from the first exponential term in the
renormalized potential, and hence the basic results of regime
I, i.e., Egs.(4.19 and (4.20, also apply in the present re-
gime.

In addition to the critical transitions we still have a first-
order transition for; >0 and7<0 such that the topology of
the phase diagram fag;=0 is identical to Fig. £a). For

completeness we note that upon settg=e 2 Wt (1T
to zero we identify the loci of the first-order phase boundary

as (b) |

- 1
To~— iexq—m/_w— 1)/29,], (4.30

for small gy, in this regime.
Forqs<0 the critical behavior is qualitatively unchanged  giG, 5. Schematic renormalized- ;) phase diagrams in re-

since, as can be seen from E4.25), theq, contribution is  gime I for the case$a) gs<Qs(w) and (b) gs>Qs(w). The loci

always positive in this regime and can be incorporated intf critical unbinding transitions are given by the dotted lines, with

the constanK when determining leading order behavior.  the superscripts indicating the two essentially different types of
For g;>0 the phase behavior is very rich with two dif- transition. Thick lines represent the first-order transition phase

ferent scenarios dependent upon the magnitudg;ofThe  boundaries. The dashed lines correspond to the metastability limits

crossover occurs wheg=Q5(w) where of the unbound state, and identifies the critical end point de-

scribed in the main text.

Q3<w>—\[[1+ V2o-1)c](y20-1), (4.3) - 3(\2-Vw)? 1 1
T~exp — Q3In[ QJ .

2\/8w
(4.32

and the presence of the wall strengtindicates that results
in this regime will depend quantitatively on the treatment of
the wall restriction. Whej;<Q3(w) the negative contribu- For ;>0 the phase boundary for the fluctuation-induced
tion to the second exponential is insufficient to destabiliz€fsirst-order unbinding transition smoothly connects with the
the critical unbinding transition dt|=0. Thus the critical ~usual first-order boundary as shown schematically in Fig.
transition remains in this case with leading order critical be-5(b). When q,/qs=<1 there is no unbinding transition for
havior described by Eq$4.28 and(4.29. Furthermore, the fixed q,, while for larger fixedq,; we have reentrant behav-
origin remains a multicritical point with a first-order phase ior.
boundary in the lower right quadrant of the phase diagram
[see (4.30] and the second critical transitiorf for g
=0,7>0. Hence the phase diagram is qualitatively the same
as forqs=0 as shown schematically in Fig(e. The final fluctuation regime is given fdK 2wt. In this

Conversely, whem;>Qg(w) the g3 contribution desta- case all the parts of the renormalized potential take the form
bilizes the* transition with the phase transition being driven of Gaussians with
first order. Forq;<0 the transition boundary is shifted into

the positiver region of the phase diagram and terminates on WO ()~ M
the g, =0 axis at the poinP where A7 wt

C. Regime llI: Strong fluctuations

ezt—|2/4wt, (4.33
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where K(X)=7/(1-x)[1—q,/(1—Xx)]+1/(2—x)[1  However, whery; is significantly smaller thag; there is no
—q3/(2—x)]+c/x. Identifying! T andt™ using the matching transition and the interface is always predicted to be bound.

requirementg4.1) and (4.2) reveals that the ansatz 2wt Recall7 is simply a measure of the deviation from the mean-

corresponds to the restrictian>2 that defines regime Il field critical wetting phase boundary so varyirgexplores
The best estimates for the capillary parameter suggest the vicinity of the mean-field transition boundary in the sur-
~0.75[Refs.[29-31] and so we do not expect regime lll to face phase diagram. For concreteness we consider a fixed
be relevant for comparison with Monte Carlo simulation value of| x| and explore the phase diagram by varyingin
studies. Hence we forgo a detailed derivation of the phasgrder to determine whether the interface remains bound or
diagram in this regime and simply describe the main feaundergoes a reentrant transition to the unbound state we must
tures. identify whether or not; will exceed the value of;. We

The overall phase diagram is topologically the same as ihave determined this numerically within the triple parabola

regime Il although the precise location of the phase boundmodel. The value ofj; is found to increase in the vicinity of

aries are modified. Once again there is a crossover value_ as|ud is increased. In contrasy rapidly decreases as

Qs(w) such that forgs< Qg the * transition remains critical |, | is increased. Thus ds—o the ratiogs/q,—o S0
and forgs>Qj3 the transition is fluctuation-induced first or- that for sufficiently largefixed) | u | there will be no transi-
der. In the first case the phase boundary is shifted from th&on and the interface will always be bound. For smaller fixed

7=0 axis, further the* transition phase boundary is also | but still in the mean-field critical region one may cross
shifted from theq,=0 axis and where the two transition two transition lines enclosing a region representing an un-
lines meet there is a multicritical point from which a first- bound interface as is varied. We remark that the “renor-
order phase boundary emerges. For both of the critical trarmalization” of q; due to the inclusion of a nonzerp term
sitions we identify exponential growth for the parallel corre-discussed in Sec. Il does not effect the above conclusion
lation length sov* = »* =cs. Forq3>63 the phase diagram SINcedz is found to have the same qualltatlve_ behaviogas
is similar to Fig. %b) although the critical transition line is 0 complete the renormalized phase diagram we must
slightly shifted from theg,=0 axis. Crucially there are still explore the effect of f_Iuctuat|0ns on tlhe megn-fleld first-order
two disconnected regions of unbounded phase as shown R12s€ boundary. This may be achieved in much the same
the figure. way as we examilned the cnu_cgl transition in e_arl|er sections
with a slightly different modified bare potential. Near the
first-order transition, the coefficieny,, in the expansion
V. RENORMALIZED SURFACE PHASE DIAGRAM (2.2) for the potential is negative and so it is necessary to
take the next order term into account. Furthermore, the co-
The RG analysis of the previous sections has demorefficientssy,y andsy,; in the stiffness expansiof2.3), along
strated that fluctuation effects will strongly modify the mean-with the corresponding coefficients in E@.4) for the rigid-
field predictions for phase behavior with the position depenity, will both change sign at the tricritical point in Fig. 1.
dence of the stiffness and rigidity being of vital importance.Thus, instead of E¢B.5), we need to consider the following
In this section we wish to understand how this modified be-modified bare potential

havior in the space of, g;, andqgs; can be interpreted in - -
terms of the surface parameters, and in particular how a typi- ~ WO()=7(1-qil)e™'+(qsl —r)e"?+se™, (5.)
cal mean-field surface phase diagram as exemplified in Fig.  _
1, will change under renormalization. To do this we mustwith 7, q;, gs, andr as before[see Eq.(3.3)], while s
first determine the dependencemqmfandqs upon the surface =W+ C1S110F C2K110> 0. In this formulation the final two
parameters, most notably the surface figldand enhance- terms(i.e.,re”? andse ) are only required to ensure that
ment wg, in the critical regime. Second, we must considerl =0 is not incorrectly identified as a boundary minimum of
the issue of renormalization effects upon the bare first-ordethe potential. As in Sec. lll, we can gauge the effect of fluc-
transition shown in Fig. 1. tuations by performing a mean-field-like study of this poten-
To address the first of these issues we note from(&@®)  tial. The role played byq; is again intriguing, since it
thatqs/qg, can be written in terms of the stiffness and rigid- changes the sign of the leading order term in the potential.
ity coefficientss,, Sg, ko, andks. We further observe from By minimizing Eq. (5.1) it is straightforward to identify a
explicit calculation within the triple parabola model that in second-order unbinding transition ‘as:0", which we may
each case the stiffness contribution dominates over the rigidnterpret as a fluctuation-induced critical transition. By fur-
ity one such thafj;/q,~ss/s,. Both of the contributions;  ther decreasing, the interface becomes bound again at a
andsg are strictly positive near the critical transition. Con- first_order transition, pointing to reentrant behavior, compat-
sequently, only the results of the RG analysis for posiiye  jhle with the aforementioned results for the bare critical tran-
andq are relevant in determining the renormalization of thesition, These results are also found from the fully linearized
critical boundary. We restrict our attention in this section toRG study in regimes | and I, where in each case the diver-
w<2 (i.e., regimes | and )las seems reasonable for com- gence ofl at the second-order transition is identical to that
parison with simulations. For these cases we see from thgyund for the* transition in the relevant regime.
last section that ifq,=q; we predict reentrant behavior  Thus combining all of our results yields a renormalized
crossing two first-order transition boundaries7as varied.  surface phase diagram as depicted in Fig. 6. We observe that
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™ true beyond mean-field due to the presence of position-
K dependent contributions in the interfacial stiffness and rigid-
ity. A detailed RG analysis reveals that the surface phase
diagram is dramatically revised due to fluctuations, with Fig.
1 being replaced by Fig. 6. Most notably the unbound region
in the phase diagram is rather limited and so any observation
of the unbinding transition would require a fine tuning of the
surface parameters. Furthermore, for a given surface en-
hancement it is no longer guaranteed that we could induce a
transition by varying the surface fielgt|. As a consequence
we believe that the observation of such a transition in a simu-
lation would prove problematic and thus suggest that this
system would be a poor candidate for observing the pre-
dicted nonuniversal critical exponents associated with un-
binding [19].

We comment that the effect of the position-dependent

FIG. 6. .SChe.mat'C ph?‘se d'.agram for the unbinding .Of awall-htributions in the gradient coefficients is significantly dif-
microemulsion interface including the effect of fluctuations. The[]

. X : : .. _ferent to the previously predicted stiffness instability mecha-
unbound state is stable only in a narrow region confined by criticalis, for fluids[15,21. In that case a second-order transition
(dotted and first-order(solid) phase transition lines. The filled o~ jegtapilized by new next-to-leading-order terms in the
circle indicates the tricritical poinfTCP). renormalized interface potential. In the present case it is the
leading order term that is modified, yielding the dramatic
the unbound state is stable only in a limited region of thechanges in phase behavior described above. It is opportune at
diagram and that it is no longer the case that unbinding tranthis stage to comment that recent extensions to interface
sitions are found for all values of the surface parametersmodeling for simple fluids could also be applied to ternary
Note that the original large unbound region in the high| mixtures and can be relevant if one is interested in extending
regime of Fig. 1 has become a region of bound states, whicthe analysis beyond the calculation of the phase diagram. In
is directly attributable to the presence of theterm in the  particular, when considering a complete unbinding transition
renormalized potentials. The phase transition lines that aré may be appropriate to derive a two-field interface model
the borders of the unbound region in Fig. 6 follow from the incorporating one interface that remains bound to the wall,
renormalization of the mean-field phase boundaries as outd one that unbinds in the limit of the transitif82]. This
lined above. We distinguish a critical transition Q\ashed extended model would contain both a stiffness matrix famil-

line) and a first-order transition FMi&olid line) merging at a ifar from simple fluids and a curvature matri>_<. An interesting
tricritical point. In regime | the TCP is located at the same/n€ Of future research would be to examine whether one

finds a connection between these matrices and the free-

position ‘as the TCP iin the mean-field phase diagraméner analogous to the stiffness matrix—free-energy rela-
whereas in regime Il it may shift depending on whether or 9y, 9 9y

: tion of simple fluids[33,34.
nolt q?>tiQr? i[s?r? Ef%(?gg’)t] nerarVitge mean:‘Lﬁlii\"I’Cri. Ourr Finally, we note that the RG results described in Secs. IlI
et ol ot e o oo a1V ae very genera and s i analyss s expected o b
gram although we anticipate it is rather narrow. More impor-"’lpplic‘f’Ible to a range of unbinding behavic')r' in tenary m?x-
- o C tures. The overall results will depend sensitively on the sign
tantly there is no longer a prescriptive route for finding the

unbinding transition in the system once fluctuation effectsg;rtgepg%if{i';:g:sqéa ?g 4;a]tc.',: oa:pg:r?]rp])?elg tg:r emgﬁgf—;

have been included. For example, if in a given system Weransition is predicted to remain continuougjif andq; are

find _the interface is na bound state, it is not certain that bynegative, very different to the behavior in our specific system
varying the surface field, say, that we could induce an un-

binding transition. Even if it is possible we would not be ableWhereql andg; are both positive. Thus while we have dem-

to deducea priori whether the field should be increased Oronstrated that the unbmpllr_lg (_)f_the Water-m|croemuIS|on In-
terface from a substrate is inhibited due to fluctuation effects,

decreased. Hence we believe that the opportunity for obser\{he same RG analysis may support mean-field predictions for

ing an unbinding transition is severely reduced due to fluc- ST "
. other unbinding transitions.
tuation effects.
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upon the unbinding of a water-microemulsion interface from
a substrate in a confined complex fluid. At mean-field level
such a transition is predicted for all values of the surface
parameters as shown in Fig. 1; in particular, for any given In this Appendix we show how the RG flow equations
enhancement a transition can be induced by varying the suf2.14—(2.17 can be solved in closed form for general di-
face field. We have demonstrated that thisia@ generally mensiond.

APPENDIX: GENERAL SOLUTION OF THE RG FLOW
EQUATIONS
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To start, it is convenient to note that we can decouple thét is also evident that the solutions for the stiffness and the

set of partial differential equations by defining

UM =WO) +f(O)ASO) + () AcO(I),

(A1)
where the function$(t) andf,(t) are given by
¢ e (d-1)s
fl(t)=—QA2e<d—l>fodsm (A2)
and
¢ e (d+1)s
fz(t)z—QA“e(d*l)desm (A3)
With these definitiond) V(1) satisfies the equation
aU:’z(I)_(d DUO()+a1” m(')
Q ?UW(])
: (A4)

+
S.+r.A% gI2

This equation is analogous to the original wall-potential flow

equation solved by Fisher and Hu$&9], thus we may
readily identify the solution

Jx d|’u<°>(|')exp[—

The width of the convolutiorgy(t) is given by

gz(t)=2ftds
0

(d-1)t

V2mg(t)

AT NAYA
ud1)= u]

20%(t)
(A5)

Qe2§3

—_— Ab
S+ k. A%e % (A6)

rigidity will have similar forms[compare Egs(2.14 and
(2.15 to (A4)]. All we need to do is replacd by AX or Ak,
andd—1 by 0 or—2, respectively. Thus, the solutions read

(eftl—1")2
ASO()= dI’ A O’ )exp[ -
= J_ mg(t f ( 2g*(t)
(A7)
and
(eltl—1")2
AxO()= dl’Ax©(1"exg - ———
= Fg()f < p[ 20%(1)
(A8)

It is now straightforward to find the solution for the bind-

ing potential  since WO =U®O(1)—f,(t)ASO(1)
—f,(t)AxY(l) from Eq.(A1). Thus
(d—1)t © ~ (e§t|_|/)2
w(1)= —f dl" WO ’)exp{ - —]
V2mg(t) ) = 29%(1)
(A9)
where the initial potential is
WOy =WO(1)—f,(t)e” @A O)(])
—f,(t)e @A O], (A10)

In d=3 we may explicitly solve the integra({&2) and(A3)
so that Eq.(A10) reduces to Eq(2.22. Moreover, in three
dimensionsf=0 and so Eq(A9) reduces to Eq(2.21).
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