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Fluctuation-induced constraints on the observation of unbinding in a confined complex fluid

F. Clarysse and C. J. Boulter
Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

~Received 23 January 2001; published 25 June 2001!

An extensive study of the effect of fluctuations on the unbinding of an interface from a wall in a ternary
system is presented. The framework upon which the analysis is based is a linear functional renormalization
group scheme of the appropriate effective interface Hamiltonian. The interface model includes position-
dependent gradient coefficients, and their presence is shown to be equivalent to modifications of the bare
interface potential that are highly relevant in determining the renormalized critical behavior. We analyze the
modified interface potential in a mean-field-like way for both bare critical and first-order unbinding transitions
in order to highlight the key effects. We further perform a detailed study of the linearized renormalization
group equations identifying three fluctuation regimes and recovering earlier predictions for nonuniversal criti-
cal exponents. The surface phase diagram changes dramatically under renormalization with, most notably,
fluctuation-induced reentrant behavior. We show that in the revised phase diagram the unbound region is
limited in extent indicating that the opportunity for observing an unbinding transition in a confined complex
fluid is highly restricted.
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I. INTRODUCTION

There has been considerable recent interest in the ch
istry and physics of complex fluids, mainly due to their wi
range of applications and the diversity of structures that m
be observed in these systems. The ubiquitous example
ternary mixture of oil, water and surfactant or amphiphile
which the bulk phase behavior is well understood@1#. Fur-
thermore, due to the potential coexistence of three or m
bulk phases, these mixtures have attracted much atten
from the point of view of interfacial critical phenomena an
unbinding or wetting phase transitions@1–7#.

In recent work we have focused on confined ternary s
tems and analyzed pure surface effects due to the presen
a wall or substrate@8–10#. More specifically, we have pre
dicted the existence of an interface unbinding transition i
semi-infinite geometry at three-phase coexistence of the
water, and microemulsion. At this transition the wa
microemulsion interface is wetted by either the oil-rich or t
water-rich phase. This study is based upon a Ginzbu
Landau~GL! free-energy functional of a single scalar ord
parameterf(r ) representing the local concentration diffe
ence between oil and water. The short-range wall-bulk in
action is accounted for via a surface density term,

Ls5msf1vsf
21gs~¹f!2, ~1.1!

which is characterized by three surface parameters. The
rameterms is the surface field or local chemical potentia
while vs corresponds to the surface enhancement. Fina
the presence of a local gradient is essential for correctly
termining the boundary conditions when using the sim
GL theory, and the corresponding surface parametergs has
been associated with the chemical potential of the a
phiphile at the wall@7#.

A powerful tool for studying unbinding transitions is a
effective interface Hamiltonian, which is a functional of th
thicknessl of the adsorbed surface layer@11#. In contrast to
63-651X/2001/64~1!/011604~15!/$20.00 64 0116
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the case of simple fluids where a standard square-grad
theory suffices, the appropriate model for ternary mixtu
involves higher order gradient terms that are mostly justifi
on purely phenomenological grounds or derived from
simple rigid shift ansatz@12–14#. However, partly motivated
by the failure of this approach to correctly describe a fr
oil-water interface~as demonstrated in@6#!, a controlled and
careful derivation of the Hamiltonian was recently present
leading to an improved interface model for describing flu
tuating interfaces and membranes in complex fluids@8–10#.
The main new feature of the model is the presence
position-dependent stiffness and rigidity coefficients high
analogous to the discoveries of Fisher and Jin@15# and
Fisher et al. @16# for wetting in simple fluids. Perhaps th
most important ingredient of the model is the interfacial p
tential W( l ), the form of which fully determines the mean
field phase diagram. In particular, this is simply found
observing whether the global minimum of the potential is
a finite or infinite value ofl, the first case referring to a
bound state while in the latter the interface is said to
unbound from the wall.

The results of this mean-field analysis for the wa
microemulsion interface are best summarized by referring
Fig. 1, which is a schematic surface phase diagram as a f
tion of the parametersms andvs for fixed bulk parameters a
three-phase coexistence. The generic behavior shown in
figure is not sensitive to the value ofgs . The diagram dem-
onstrates that an unbinding transition can be induced ei
by increasing the absolute value of the surface field~which is
assumed negative on physical grounds, see later!, or by de-
creasing the value of the enhancement parametervs . The
transition is typically found to be first-order in the lowumsu
regime @first-order ~FW! wetting phase boundary#, whereas
for larger umsu second-order or critical transitions are pr
dicted @critical wetting ~CW! phase boundary#. The two re-
gimes are separated by a tricritical point~TCP! that is also
the terminus for the two metastable limits associated with
©2001 The American Physical Society04-1
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first-order transition@17#. For the unbound state, this met
stable limit ~ML ! is given by the dashed line ML.

Experimental observations of the critical wetting tran
tion predicted above are unlikely due to the presence of lo
range van der Waals forces; however, in such systems a
order transition is still predicted to be observable@9#. In
contrast, Monte Carlo simulations may provide quantitat
tests of the theoretical results for critical unbinding. Nev
theless, mean-field results are often a poor guide and at m
qualitatively correct since they ignore the effect of fluctu
tions. Therefore it is important to ascertain the importance
thermally induced fluctuations on the overall phase beha
in complex fluids with short-range interactions. It is this
sue we address in the present article.

We incorporate fluctuations by employing a linear fun
tional renormalization group~RG! treatment of the effective
interface model@15,18–20#. In this paper we apply the RG t
provide a thorough understanding of the fluctuation effe
In particular, the position dependence of the gradient te
in the model proves to be highly relevant in determining
critical behavior, in analogy with theinstability mechanism
found for simple fluids, leading to critical transitions bein
driven fluctuation-induced first-order@21,20,22#. We demon-
strate that for complex fluids the effect is even more dra
and gives rise to strong constraints on the possible obse
tion of the unbinding transition in confined systems. Con
quently, the mean-field phase diagram of Fig. 1 is sign
cantly modified due to fluctuations and the revised ph
diagram is one of our main results.

The remainder of the paper is organized as follows.
Sec. II we recall the main ingredients of the effective int
face Hamiltonian for a ternary system with an external s
face. We describe the generic expressions for both the in
face potential and the gradient coefficients near criti
unbinding and introduce the functional RG scheme for
model. This reveals that the presence of position-depen
gradient coefficients has the same effect as modifying
bare interface potential. In Sec. III we analyze the modifi
potential in a mean-field-like way near the critical transitio

FIG. 1. Schematic mean-field phase diagram for the unbind
of a wall-microemulsion interface at bulk three-phase coexiste
First-order~FW! and continuous~CW! unbinding phase boundarie
are shown by solid lines, and meet at the tricritical point~TCP!. The
dashed line ML denotes the metastable limit of the unbound st
01160
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which provides a useful guide to the importance of t
position-dependent gradient coefficients. Section IV de
with the fully linearized RG study based on a standa
matching and rescaling procedure in the critical limit, fro
which we identify three scaling regimes. Results are p
sented for the various phase boundaries, the different sin
larities, and the critical exponents. In Sec. V we gauge
effect of fluctuations on the first-order boundary of Fig.
and assemble the results to sketch a renormalized phase
gram. This section also provides a summary of the impli
tions of the RG theory for the phase behavior. We close
paper by discussing the relevance of our results for sim
tions and their applicability to other unbinding transitions
ternary systems.

II. INTERFACE MODEL AND FUNCTIONAL
RENORMALIZATION

A. Background

The functional RG approach for wetting transitions
based on an effective interfacial Hamiltonian,HI@ l (y)#,
where l (y) measures the distance of the interface from
wall, assumed to be in the planez50. With this notationy
denotes the (d21)-component vector specifying a point o
the wall. This Hamiltonian may be derived systematica
from the underlying bulk order-parameter theory by intr
ducing acrossing constraintdefinition of the collective co-
ordinatel and taking a trace over the remaining degrees
freedom@15,16,20#. This nontrivial formalism was recently
implemented for ternary systems and the following Ham
tonian was obtained@8#

HI@ l #5E dy$ 1
2 k~ l !~¹2l !21 1

2 S~ l !~¹ l !21W~ l !%.

~2.1!

We note that this Hamiltonian model is valid for any situ
tion where there are interactions between two surfaces
ternary amphiphilic system; however, we concentrate h
on the case of an interface unbinding from a wall. We furth
assume three-phase coexistence with the middle or mi
emulsion phase stable in the bulk, i.e, in the limitz→`, and
a negative surface fieldms such that the denser water pha
is adsorbed by the substrate@23#.

The interface potentialW( l ), which describes the interac
tion of the interface with the wall, and the position
dependentcurvatureandstiffnesscoefficients,k( l ) andS( l )
respectively, can be expressed in terms of the planar c
strained order-parameter profilefp , full expressions are
given in Ref. @9#. The gradient coefficientsk( l ) and S( l )
contain explicit l-dependent pieces,Dk( l )[k( l )2k` and
DS( l )[S( l )2S` , respectively, where the subscript` re-
fers to afree interface between the adsorbed phase and
middle phase. From this definition we note that the positio
dependent contributionsDk( l ) andDS( l ) vanish in the limit
l→`.

To enable progress it is convenient to employ a piecew
parabolic~or triple parabola! model and approximate the G
bulk free-energy density by three parabolas@1#. While this
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FLUCTUATION-INDUCED CONSTRAINTS ON THE . . . PHYSICAL REVIEW E 64 011604
approach facilitates quantitative computations, it is no
that similar results are also anticipated from af6 model@24#.
For complex fluids one identifiestwo length scales,b1

21 and
b2

21 say, which control the domain size of coherent oil a
water regions, and the exponential tails in the ord
parameter profile. Within this model the bare binding pote
tial is found to take the general form@9,25#

W~ l !5 (
i , j 50

( i 1 j .0)

`

~wi j 02wi j 1l !exp@2~ ib11 j b2!l #,

~2.2!

where we assume thatW( l )→0 in the limit of l→`. For
fixed bulk parameters, which is relevant for our study
unbinding, the values ofb1 and b2 are fixed and, to allow
discussion relating to earlier results@8,9#, we assume tha
b2,b1,2b2,b21b1,•••, without loss of generality.
Similar expansions are found for thel-dependent parts of th
stiffness and rigidity coefficients, i.e.,

DS~ l !5 (
~ i 1 j .0!

i , j 50

`

~si j 02si j 1l !exp@2~ ib11 j b2!l #

~2.3!

and

Dk~ l !5 (
i , j 50

( i 1 j .0)

`

~ki j 02ki j 1l !exp@2~ ib11 j b2!l #.

~2.4!

To explore the generic behavior of the set of coefficie
appearing in these expansions, we introduce the paramet
to denote the distance~in the space of surface paramete!
from the unbinding transition such thatt,0 corresponds to
a bound state andt.0 to an unbound one. With this defin
tion in mind, the mean-field critical transition is controlle
by t→02. The leading order results for the potential in t
triple parabola approximation can then be written as@9,25#

w010'w1t, w100'2w2t,

wi j 150~; i , j !, w020'w3 , ~2.5!

where allwi are positive parameters that may be assum
constant in the vicinity of the transition.

Similarly, the parabolic approximation yields

s010's1t, s011's2t,

s100'2s3t, s101's4t, ~2.6!

s020's5 , s021's6 ,

for the stiffness coefficient@9,25#, with strictly positive pa-
rameterssi . We note that the first coefficient in the set
si j 1 is nonzero, we will show below that this can have d
matic consequences for the unbinding transitions.
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The calculation of the coefficientski j 0 and ki j 1 is non-
trivial, even in the triple parabola approximation. Neverth
less, it is straightforward to find a zeroth-order approxim
tion, leading to the following coefficients@9,25#

k010'k1t, k0115k2t,

k100'2k3t, k1015k4t, ~2.7!

k020'k5 , k021'k6 ,

with all ki>0.

B. Renormalization group equations

Our task is now to implement a functional RG treatme
of the interface Hamiltonian~2.1!, an outline of which was
introduced in@9#. Here, we present a more detailed analy
and discuss the linear RG flow equations.

Following others@19,21#, we write our Hamiltonian in the
form HI@ l #5H0@ l #1HW@ l # whereH0@ l # is the free part

H0@ l #5E dy$ 1
2 k`~¹2l !21 1

2 S`~¹ l !2%, ~2.8!

andHW@ l # the interaction or wetting part

HW@ l #5E dy$ 1
2 Dk~ l !~¹2l !21 1

2 DS~ l !~¹ l !21W~ l !%.

~2.9!

Implicitly contained within these definitions is a small-sca
cutoff L21 ~or equivalently a momentum cutoffL).

The construction of the functional RG has been well e
plained elsewhere@18–21,26,27# and so we restrict ourselve
to a brief summary of the pertinent points here. The fluc
ating field is divided into two partsl (y)5 l ,(y)1 l .(y),
where l , represent the small-wave-number or large-sc
fluctuations andl . the large-wave-number or small-sca
fluctuations. Hencel , contains all Fourier components ofl
with wave numbers in the range 0,uku,L/b and l . those
with L/b,uku,L, whereb5et is the spatial rescaling fac
tor ~see below!. The fluctuationsl . are integrated out result
ing in an effective Hamiltonian,HI8@ l ,#, for the large-scale
fluctuations alone. This intermediate, unrescaled, renorm
ized Hamiltonian is defined via the partial trace

exp$2bHI8@ l ,#%5
1

NE Dl .exp$2bHI@ l ,1 l .#%,

~2.10!

with b51/(kBT), and whereN is an appropriately defined
normalization factor. The crucial assumption of the line
RG is that the perturbationHW is small such that it is ad-
equate, when taking the partial trace in Eq.~2.10!, to expand
in HW and retain only the first-order term yielding

HI8@ l ,#5H0@ l ,#1R$HW@ l ,1 l .#%, ~2.11!

where R5N21*Dl .exp$2bH0@ l .#% is a linear operator
normalized byR$1%51. To evaluate this term we emplo
4-3
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the techniques of Jin and Fisher@21# developed specifically
for the situation where a spatially varying stiffness coe
cient is present. The idea is to expandHW to quadratic order
in l ., setb5edt and considerdt→0 so as to derive differ-
ential flow equations.

Finally, we must rescale to bring the momentum cut-
back to its original value. In particular it is appropriate
apply the rescaling@26,27#

y→y85y/b, l ~y!→ l 8~y8!5 l ~y!/bz, ~2.12!

wherez5(32d)/2. It is then straightforward to obtain th
set of RG flow equations. First, for the bulk part of the
gidity we find

dk`
(t)

dt
522k`

(t) , ~2.13!

which yields k`
(t)5e22tk` , demonstrating thatk` simply

flows to zero under renormalization. Second, the positi
dependent parts of the gradient coefficients, i.e.,DS( l ) and
Dk( l ), evolve according to the following equations

]DS (t)~ l !

]t
5z l

]DS (t)~ l !

] l
1

V

S`1k`L2e22t

]2DS (t)~ l !

] l 2
,

~2.14!

and

]Dk (t)~ l !

]t
522Dk (t)~ l !1z l

]Dk (t)~ l !

] l

1
V

S`1k`L2e22t

]2Dk (t)~ l !

] l 2
, ~2.15!

where, for brevity, we have introduced

V5
kBTL (d23)

~4p!(d21)/2GF1

2
~d21!G . ~2.16!

In contrast to the above, the flow equation for the interfa
potential depends explicitly on the other renormalized qu
tities, with

]W(t)

]t
5~d21!W(t)1z l

]W(t)

] l
1

V

S`1k`L2e22t

3F ]2W(t)

] l 2
1L2DS (t)1L4Dk (t)G . ~2.17!

The solutions of these flow equations can most easily
found by decoupling the flow ofW(t) from that ofDS (t) and
Dk (t). The details of this procedure for general dimensiond
are given in the Appendix, here we only quote the clos
form solutions ind53. From Eqs.~2.14! and ~2.15!, it is
evident that bothDS (t) and Dk (t) will evolve in a purely
diffusive way, with explicit solutions
01160
-

f

-

e
-

e

-

DS (t)~ l !5
1

A2pg~ t !
E

2`

`

dl8DS (0)~ l 8!

3exp@2~ l 2 l 8!2/2g2~ t !#, ~2.18!

and

Dk (t)~ l !5
1

A2pg~ t !
E

2`

`

dl8Dk (0)~ l 8!

3exp@2~ l 2 l 8!2/2g2~ t !#, ~2.19!

where the width of the Gaussian convolution is given by

g2~ t !5
kBT

4pS`
lnS S`e2t1k`L2

S`1k`L2 D . ~2.20!

Furthermore, one finds that the solution forW(t) is of a simi-
lar form, with

W(t)~ l !5
e2t

A2pg~ t !
E

2`

`

dl8W̃(0)~ l 8!exp@2~ l 2 l 8!2/2g2~ t !#,

~2.21!

which means thatW(t) renormalizes precisely as in the ca
of constant gradient coefficients@9,19#, except that the initial
bare potentialW(0)( l ) is replaced by the modified expressio

W̃(0)~ l !5W(0)~ l !1
kBT

8pk`
f tDS (0)~ l !

1
kBTL2

8pk`
F12e22t2

S`

k`L2
f tGDk (0)~ l !,

~2.22!

where f t is given by

f t5 lnS S`1k`L2

S`1k`L2e22tD . ~2.23!

For the study of critical wettingt is large and thus,W̃(0)

essentially differs fromW(0) only by fixed terms propor-
tional toDS (0) andDk (0). Hence at a simple level the effec
of the position-dependent gradient coefficients can be gau
from this modified bare potential~see Sec. III!. Furthermore,
it is apparent from Eq.~2.22! that terms inDS (0) andDk (0)

@see Eqs.~2.3! and ~2.4!# can compete with terms inW(0)

@Eq. ~2.2!# and hence strongly influence the critical behavi
This resembles the situation in simple fluids where it leads
a mechanism destabilizing the critical transition@15,20,21#.

III. MEAN-FIELD ANALYSIS OF MODIFIED BARE
POTENTIAL FOR CRITICAL UNBINDING

Before we explicitly calculate the renormalized potent
by performing the convolution in Eq.~2.21!, we first analyze,
at a mean-field level, the modified bare potentialW̃(0)( l )
given in Eq.~2.22!. This will give us a good estimate of th
4-4
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effect of fluctuations on the bare critical transition.
To begin, it is clear from the above results that this mo

fied potential can be written in the form

W̃(0)~ l !5 (
i , j 50

( i 1 j .0)

`

~w̃i j 0
(t) 2w̃i j 1

(t) l !exp@2~ ib11 j b2!l #,

~3.1!

where the modified coefficients are

w̃i jm
(t) 5wi jm1

kBT

8pk`
f tsi jm

1
kBTL2

8pk`
S 12e22t2

S`

k`L2
f tD ki jm , ~3.2!

for m50,1. In comparison with the initial bare potential, th
most notable feature of Eq.~3.1! is the presence of nonzer
terms varying asl exp@2(ib11jb2)l#, highly analogous to the
discoveries for simple fluids@15,20,21#. However, in the
present situation, the first of these terms,2w̃011

(t) le2b2l , be-
comes theleading-ordercontribution in the modified poten
tial, and, unsurprisingly, this drastically alters the predictio
for the critical behavior.

In what follows we will frequently drop the terms con
taining e22t in the above expressions since they vanish r
idly when t becomes large~as is the case in the regime o
interest!. Near critical wetting, we can combine the resu
~2.5!–~2.7! and write

w̃0105 t̃[t~w11c1s11c2k1!,

w̃0115 t̃q1[t~c1s21c2k2!,

w̃10052 t̃p[2t~w21c1s31c2k3!, ~3.3!

w̃1015 t̃q2[t~c1s41c2k4!,

w̃0205r[w31c1s51c2k5.0,

w̃0215q3[c1s61c2k6.0,

etc., whereci ,qi ,p,r are positive constants. Note that th
first four coefficients are proportional tot and hence vanish
on approach to the mean-field critical phase boundary. T
after a rescaling of the thicknessl, the modified bare poten
tial reads

W̃(0)~ l !5 t̃~12q1l !e2 l2 t̃~p1q2l !e2b1l /b2

1~r 2q3l !e22l , ~3.4!

which clearly demonstrates the presence of the new lea
order term with coefficientq1, which, crucially, has the op
posite sign to the original leading order term. In the analy
that follows we will typically ignore the second exponent
term in Eq.~3.4!. This is partly based on explicit evaluatio
of the various terms within the triple parabola model, whi
01160
-

s

-

s,
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suggests that the coefficientsp andq2 are several orders o
magnitude smaller than their counterparts in the first te
Furthermore, an extensive numerical study indicates that
term has no qualitative effect on the phase diagram. We
further estimate the quantitative effect by noting that
1,e,2 we can crudely approximatee2e l by the interpo-
lated formulae2e l'(22e)e2 l1(e21)e22l . Thus upon set-
ting e5b1 /b2 we identify that the main effect of this term i
a ‘‘renormalization’’ of the other parameters (q1 , r, etc.!
with, for example, q1→q11(22b1 /b2)q2 and q3→q3
1t(b1 /b221)q2. Hence we anticipate that the only effe
of the second exponential term is to slightly shift the pha
boundaries predicted below.

Therefore, to obtain the general phase behavior it suffi
to minimize the potential

W̃(0)~ l !5 t̃~12q1l !e2 l1~r 2q3l !e22l , ~3.5!

and inspect the location of the global minimum as a funct
of t̃, q1 and q3. Recall, t̃ measures the deviation from th
bare critical transition, i.e., the transition determined by
potentialW(0)( l ). We further setr 51 without loss of gen-
erality and, although our main interest is for the case
positiveq1 andq3, we do consider both positive and neg
tive values of these parameters in order to take into acco
a possible shift due toq2 ~see above!. For clarity we consider
slices through the phase diagram with fixedq3 or fixed q1,
and collect our results together at the end of this section

A. „ t̃,q1… diagrams for fixed q3

We start with a comprehensive study of the potential
fixed q3. The most notable feature is that for positiveq1, the
leading-order term will change sign as compared to the or
nal potential. Clearly, this will have a dramatic effect on t
phase behavior, and in Fig. 2 we present some typical
amples of phase diagrams showingq3 fixed zero, negative,
and positive. Further details are provided below.

Let us first consider the simplest case whenq350 @Fig.
2~a!#, for which the analysis is relatively straightforward. W
distinguish four regions, separated by first-order or conti
ous phase boundaries. Whent̃ and q1 are both positive,
W̃(0)( l ) has a minimum at finitel corresponding to a bound
~B! state. Asq1→0, however, the location of this minimum
diverges according to

l'
1

q1
, ~3.6!

such that there is a critical unbinding transition forq150,
t̃.0 ~dotted line!. Indeed, in the upper left corner of th
diagram, all terms in the potential are positive and the int
face will be unbound~UB!. In addition, when taking
t̃→01 while keepingq1 strictly positive, the thickness als
continuously diverges with

l' lnS 1

u t̃u
D , ~3.7!
4-5
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and hence another critical boundary is identified. Simila

when t̃ andq1 are both negative, the interface is also bou
with a continuous transition fort̃→02 and where the inter-
face again diverges according to Eq.~3.7!. Hence the dotted
line t̃50 represents a continuous phase boundary for allq1.

In the final quadrant of the diagram the interplay betwe
positive and negative contributions toW̃(0)( l ) suggests the
possibility of a first-order transition. By minimizing the po
tential in this regime, we indeed find a first-order unbindi
transition represented in Fig. 2~a! by the solid line. The
thicknessl 0 of the adsorbed layer at the point of the tran
tion, i.e., prior to the jump to infinity, is given byl 051/q1
21, and the transition boundary reads

FIG. 2. (t̃,q1) mean-field phase diagrams for~a! q350, ~b!
q3520.25, and~c! q350.25, showing unbound~UB! and bound
~B! regions. The phase boundaries are shown by dotted~critical!
and solid ~first-order! lines, while the dashed lines denote me
stable limits. The open circle in~a! and~b! represents a multicritica
point. Further, the dashed-dotted line in~c! marks a thin-thick tran-
sition, with P andP* both being critical end points.
01160
y

d

n
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t̃052
1

q1
e(q121)/q1. ~3.8!

We further can identify the two metastable limits connec
to the first-order transition, these are shown by the das
lines. By considering just the tail of the potential it is cle
that the lineq150 marks the point where the extremum
l 5` changes its character from being a local minimum to
local maximum, and hence corresponds to the metast
limit for the unbound state. For the other metastable limit
find

t̃ML52
2

q1
e21/q1. ~3.9!

Within this phase diagram the origin acts as a multicritic
point.

For negativeq3, the phase diagram remains qualitative
unchanged, a representative example is given in Fig. 2~b! for
q3520.25. However, due to the presence of theq3 term the
computation of the first-order boundary is a little more i
volved and analytic results are more complex, although s
attainable. For example, we obtain

t̃052
11q32q3l 0

q1
e2 l 0, ~3.10!

where l 05@q11q32$(q12q3)(q12q314q1q3)%1/2#/2q1q3
again represents the thickness at the transition point. We
frain from calculating the metastable limit of the bound sta
in this case, although numerical studies suggest it is likely
be of the same form as Eq.~3.10! for small q1.

It is much more interesting to discuss the change in
diagram asq3 becomes positive. As demonstrated in F
2~c! for q350.25, a very different situation is found, includ
ing some extra transitions. We start by noting that the criti
transition found in the previous cases whent→02 for q1
,0 is lost, but is replaced by a first-order transition at po
tive, smallt values~note the enlarged scale!. This transition
line terminates at acritical end point Pwith coordinates

q150, t̃5q3exp@2~11q3!/q3#. ~3.11!

Note that in this case there is only one critical phase bou
ary and that the origin is no longer a multicritical poin
BeyondP into the bound region, we further find athin-thick
transition boundary~dashed-dotted line! which, in turn, ex-
tends fromP to a second critical end pointP* with coordi-
nates

q15
q3

114q3
, t̃5~114q3!exp@2~112q3!/q3#,

~3.12!

where the two thicknesses,l 1 and l 2 say, become identical
Finally, another first-order unbinding transition is found
the bottom right corner of the figure~where t̃,0 and q1
.0). Although not apparent on the scale shown, this ph
boundary bends back to larger values ofq1 for large, nega-
4-6
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tive t̃ ~as will be clarified at the end of this section! yielding
the possibility ofreentrantbehavior. As before, the dashe
lines correspond to the metastable limits for the unbou
state.

B. „ t̃,q3… diagrams for fixed q1

To gain a complete insight into the phase behavior p
scribed by the potentialW̃(0)( l ), it is instructive to repeat the
above analysis for fixedq1 and to briefly comment on typica
( t̃,q3) diagrams.

The caseq150, shown in Fig. 3~a!, is directly analogous
to the situation for simple fluids with a position-depende

FIG. 3. (t̃,q3) mean-field phase diagrams for~a! q150, ~b!
q1520.1, and~c! q150.1, showing unbound~UB! and bound~B!
regions. The phase boundaries are shown by dotted~critical! and
solid ~first-order! lines, while the dashed lines denote metasta
limits. In each case, the origin is a tricritical point. In~c!, the thin-
thick transition line, originating at the pointP, is given by the
dashed-dotted line.
01160
d

-

t

stiffness coefficient, as studied by Fisher and Jin@15# and Jin
and Fisher@20,21#. For negativeq3 the bare mean-field pre
dictions are not affected by the stiffness term resulting in
critical transition whent→02 with a divergence given by
Eq. ~3.7!. When q3.0, on the other hand, fluctuation
induced first-order behavior is observed. The transit
boundary can easily be computed and reads

t̃05q3e2(q311)/q3, ~3.13!

with the thickness at the transition point given byl 051/q3
11. Note again the exponential behavior in Eq.~3.13! and
that the origin is a tricritical point. As before, the first-ord
transition is accompanied by two metastable limits, one
which is given byt̃50, whereas the other is

t̃ML52q3exp@2~3q312!/2q3#. ~3.14!

The inclusion of a negativeq1 value does not essentiall
alter the physics, hence the resulting phase diagram@see Fig.
3~b!# strongly resembles the previous one, with only sm
quantitative modifications.

On the other hand, for positiveq1, we predict significant
changes in the diagram, as exemplified in Fig. 3~c!. The most
striking feature is that fort̃.0 the interface is now always
bound, which results from the change in sign of the lead
order term in the potential. The first-order unbinding tran
tion seen in the previous two cases ceases to exist an
replaced by a thin-thick transition~dashed-dotted line!. This
boundary does not originate at the origin but at the poinP
with coordinates

q35
q1

124q1
, t̃50, ~3.15!

whenq1,0.25. Forq1>0.25 there is no longer a thin-thic
transition within the phase space.

We find a small unbound region in the phase diagram t
gives rise to reentrant behavior. In particular, if we decre
t̃ from a positive value~with q3,0) we find that the thick-
ness of the adsorbed layer continuously diverges ast̃→01

@with l again given by Eq.~3.7!#, therefore the dotted line
represents a critical unbinding transition. By further loweri
t̃ we return to a bound state via a first-order transition~solid
line!. Albeit hardly visible in the figure, the reentrant beha
ior is also observed for slightly positiveq3, with the borders
of the unbound region in this case given by two first-ord
transitions~so that the origin remains a tricritical point!. Spe-
cifically, we find that this occurs in the range 0,q3,q1.

This behavior is more clearly seen in a three-dimensio
phase diagram plotted in the variablest̃, q1, and q3 that
summarizes our results of this section. This is shown sc
matically in Fig. 4 where, for convenience, we restrict ou
selves to the unbinding transitions without indicating t
thin-thick transition surfaces. It is apparent from this figu
that forq1 andq3 positive~which is the relevant case! vary-
ing t̃ from a negative value to a positive one either yields
phase transition with the interface always bound, or giv

e
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two consecutive first-order transitions from bound to u
bound, and back to bound again. Thus our mean-field an
sis of the modified bare potential indicates that the bare c
cal unbinding transition is lost under renormalization and
this region of the phase diagram it is difficult~or impossible!
for the interface to become unbound. We expect the anal
of this section to be a good guide to the renormalized beh
ior provided the fluctuation effects are weak@19,21#; moti-
vated by this study we now return to the functional RG
investigate the full range of fluctuation behavior.

IV. RENORMALIZATION-GROUP RESULTS
FOR CRITICAL UNBINDING

A rigorous application of the RG for the bare critical we
ting transition essentially involves performing the convo
tion in Eq. ~2.21!, which is the issue we now address.
order to investigate unbinding phenomena using the RG
must implement a matching procedure since, as noted
Fisher and Huse, there is no nontrivial fixed point represe
ing the unbinding transition@19#. In particular we renormal-
ize up to a scalet† at which the curvature of the renorma
ized potential at the minimum is of order one, at this po
one may expand the potential around the minimum and
mean-field theory to estimate the correlation lengthj i . Thus
one finds the location of the minimum,l † say, andt† from
the requirements

]W(t)~ l !

] l U
l †

50, ~4.1!

and

]2W(t†)

] l 2 U
l †

'S` , ~4.2!

FIG. 4. Schematic three-dimensional surface phase diagra

the variablest̃, q1, and q3. The critical and first-order unbinding
transition surfaces are indicated by dashed and solid lines, res
tively.
01160
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whereS` is assumed positive. At this scale the correlati
length parallel to the interface,j i , will also be of order one
and hence from Eq.~2.12! the original parallel correlation
length isj i'et†. At critical unbinding this correlation length
diverges, sot†→`. Further, applying mean-field theory a
the matching point yields a renormalized interfacial thic
nessl † and since there is no rescaling of perpendicular d
tances ind53 @see Eq.~2.12!#, we obtain the original layer
thicknesŝ l &5 l †.

The convolution~2.21! for the potential is defined ove
the range2`, l ,`, whereas our expressions forW̃(0)( l )
have only been given thus far forl>0. In practice the un-
binding fluid interface cannot pass through the wall atz50
so one should formally include a hard-wall restriction su
that W is infinite for l ,0. However, the linearized RG can
not properly handle a potential that diverges to infinity; s
instead, we settle for the soft-wall restrictionW(0)( l )5c
.0 for l ,0. Monte Carlo simulations of a lattice version o
the interface model suggest that this approximation has
significant effect on the results, with both hard- and soft-w
restrictions yielding the same critical behavior@28#.

We must further assign values forDS (0)( l ) andDk (0)( l )
for l ,0. Here we follow the lead of Jin and Fisher and ado
the choiceDS (0)( l )5Dk (0)( l )50 for l ,0. This means that
the interface has fixed stiffness and rigidity contributions,S`

and k` , respectively, forl ,0 but varies in the way de
scribed by Eqs.~2.3! and ~2.4! for positive l. Alternative
choices are possible but will typically be equivalent to sm
modifications to the soft wall contributionc for the binding
potential@21#, hence we do not pursue these any further he

At this point the renormalized potential can be obtain
quite straightforwardly by solving the integral in Eq.~2.21!
by the method of steepest descent. To analyze the diffe
regimes it is very convenient to divide the modified ba
potentialW̃(0)( l ) into its constituent parts

W̃(0)~ l !5Wc~ l !1Wq1
~ l !1Wq3

~ l !, ~4.3!

where we define

Wc
(0)~ l !5H c, l ,0

0, l .0,
~4.4!

Wq1

(0)~ l !5H t̃~12q1l !e2 l , l .0

0, l ,0,
~4.5!

and

Wq3

(0)~ l !5H ~12q3l !e22l , l .0

0, l ,0.
~4.6!

We further note that whent is large, as is relevant for study
ing critical unbinding, the width of the convolution,g2(t),
behaves asg2(t)'2vt. Here v is the capillary paramete
given byv5kBT/(4pS`jb

2), with jb5b2
21 the bulk corre-

lation length of the adsorbed phase.
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We first consider the renormalization ofWq1
( l ), which

can be written explicitly as

Wq1

(t)~ l !5
e2tt̃

A4pvt
E

0

`

dl8~12q1l 8!exp@2 l 82~ l 82 l !2/4vt#.

~4.7!

The exponent in this integral is maximized atl s85 l 22vt, so
that for l .2vt the integral is dominated by the saddle po
at l s8 , yielding

Wq1

(t)~ l !'t̃@12q1~ l 22vt !#e(21v)t2 l . ~4.8!

Conversely, whenl ,2vt the integral in Eq.~4.7! will be
dominated by its contribution near zero that gives

Wq1

(t)~ l !'
1

A4pvt

t̃

12 l /2vt F12
q1

12 l /2vt Ge2t2 l 2/4vt.

~4.9!

We thus see that the renormalizedWq1
( l ) decays exponen

tially for l .2vt, while for l ,2vt it is a Gaussian. Arguing
along the same lines, we find that

Wq3

(t)~ l !'@12q3~ l 24vt !#e(214v)t22l , ~4.10!

for l .4vt, while for l ,4vt

Wq3

(t)~ l !'
1

A4pvt

1

22 l /2vt F12
q3

22 l /2vt Ge2t2 l 2/4vt.

~4.11!

Lastly, renormalizing the wall-part of the potential, we fin

Wc
(t)~ l !'

c

A4pvt

2vt

l
e2t2 l 2/4vt ~4.12!

for all l .0. To elucidate the renormalized transition beha
ior we now analyze the various fluctuation regimes dist
guished by the value of the capillary parameterv.

A. Regime I: Weak fluctuations

We begin by considering the casel .4vt. It is clear by
inspection that in this caseWc

(t)( l ) is a higher-order contri-
bution and so at leading orders we have

W(t)~ l !'t̃@12q1~ l 22vt !#e(21v)t2 l

1@12q3~ l 24vt !#e(214v)t22l . ~4.13!

We initially concentrate on obtaining the renormalized ph
diagram for the situation whenq350. Upon using the
matching technique we obtain from Eq.~4.1! and ~4.2!

t̃'F 22

12q1~ l †22vt†21!
Ge3vt†2 l †, ~4.14!
01160
t

-
-

e

S`'2F 12q1~ l †22vt†!

12q1~ l †22vt†21!
Gexp@~214v!t†22l †#,

~4.15!

from which we can determinel † and t†. Doing so we find
that the ansatzl .4vt is justified only forv, 1

2 ~which we
denote as regime I!, just as in the case of earlier RG studi
@19,21#. We further define the renormalized singular part
the potentialFs5e22t†W(t†)( l †), which in this regime can be
written as

Fs52@11q1t̃e23vt†1 l †#e4vt†22l †. ~4.16!

From this expression we observe thatFs<0 whenq1t̃.0
~i.e., for q1,0,t̃,0 and forq1.0,t̃.0). In the quadrant
q1,0,t̃.0 all terms in Eq.~4.13! are positive~for q350)
and so the interface is unbound in this region. As a result
distinguish two different critical unbinding transitions, on
of which occurs foru t̃u→0 and the other forq1→01 and
t̃.0.

We denote the singularities of the first of these transitio
using a superscript *. For example, the thickness^ l &* of the
wetting layer behaves as

^ l &* '
112v

122v H lnF 2

u t̃u
G2 lnF11

q1

12v
lnF u t̃u

2
G1•••G J ,

~4.17!

as u t̃u→0 and where the dots represent noncritical term
Note that the presence ofq1 only introduces a subsidiary
ln lnut̃u singularity. The result for the parallel correlatio
length reads

j i* ;u t̃u21/(12v), ~4.18!

which yields the usual critical exponentn i* 51/(12v) for
regime I @15,19,21#.

The singularities found for the other critical transitio
i.e., for q1→01, are fundamentally different. Indeed, eve
on a mean-field level, we found that the thickness diverg
in an algebraic fashion@see Eq.~3.6!# rather than logarithmi-
cally, and this is again found in the renormalized behav
In particular, using a superscript3 to denote singularities
associated with this transition, we find for the thickness

^ l &35
21v

22v S 11
1

q1
D1

2v

22v
lnF S`

t̃q1
G . ~4.19!

This behavior has been determined using only the first ex
nential in Eq.~4.13! that seems reasonable fort̃.0. Explicit
calculations reveal that including the second exponentia
the potential only leads to a small correction to the abo
result of the formq1

21e21/q1. The correlation length for this
transition growsexponentiallyfast as described by

j i
35~ t̃q1!2u1exp@u1~111/q1!#, ~4.20!
4-9



io

v

n

ir

lit

rd
.

n-

iv

dy
ti

-
f

he

n-
ru
d
se

i-
y

for
yer

t

nd

is
re-

o
s
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whereu151/(22v) and, therefore,n i
35`.

As in the mean-field phase diagram a first-order transit
is predicted in the regionq1.0,t̃,0 going from bound (u t̃u
large! to unbound (u t̃u small!. The axis t̃50 remains a
second-order phase boundary with the same critical beha
as predicted whenq1,0, i.e., Eqs~4.17! and ~4.18!. We
locate the first-order phase boundary by settingFs50 in Eq.
~4.16!, and find that the layer thickness just prior to the tra
sition is given by

^ l &05~112v!S 12q1

q1
D1v lnS` , ~4.21!

for small q1. Likewise, one finds

j i0'AS`e(12q1)/q1. ~4.22!

Using these results we obtain the transition boundary

t̃052
~S`!v/2

q1
exp@2~12v!~12q1!/q1#, ~4.23!

as q1→01. We note that all of the above reduce to the
mean-field counterparts in the limitv→01. The q350
phase diagram, incorporating all of these results, is qua
tively identical to the corresponding mean-field diagram@see
Fig. 2~a!#.

The above analysis becomes more involved forq3Þ0 al-
though analytic progress is possible. In particular, ifq3,0
the phase diagram remains unchanged with leading o
critical behavior identical to theq350 case described above
For example, the layer thickness^ l &* for the transition when
u t̃u→0 is still given by Eq.~4.17! up to corrections of the
form ln@11q3ln(ut̃ u21)# so that the critical exponents are u
changed. Inspection of Eq.~4.13! reveals that forq3<0 the
contribution from the second exponential is always posit
and so it is no surprise that theq350 andq3,0 behaviors
are qualitatively the same.

For q3.0 the situation is more complicated as alrea
suggested by Fig. 2. In this case the additional exponen
contribution related toq3 is a destabilizing factor, in particu
lar when u t̃u is small. In analogy with the earlier study o
Fisher-Jin this leads to the critical transitions along thet̃
50 axis being driven fluctuation-induced first-order with t
corresponding phase boundaries being shifted toq1t̃,0 re-
gions of the phase diagram. Forq1,0 there is always a
first-order phase boundary that terminates at the pointP with
coordinates

q150, t̃5 t̃P5S`S q3

S`
D u2

exp@2u3~111/q3!#,

~4.24!

where u25@123/(2v)#/(122v) and u35(12v)/(1
22v). Qualitatively Fig. 2~c! provides an accurate represe
tation of the phase diagram in this regime. This is also t
for q1.0 for which we identify reentrant behavior for fixe
q1 sufficiently large. Explicit calculations reveal no pha
01160
n

ior

-

a-

er

e

al

e

transitions forq1 in the range 0,q1, f (v)q3. Here f (v) is
an unwieldily complicated function ofv that displays sur-
prisingly simple behavior such thatf (v)→1 asv→0 and
f (v)*1 for 0,v,1/2. For fixedq1. f (v)q3 we predict a
sequence of two first-order transitions~from bound to un-
bound, and back to bound! as t̃ is varied from zero to large
negative values.

Finally, asq1→01 we still predict a second-order trans
tion providedt̃. t̃P . For this transition it is again essentiall
only the first exponential term in Eq.~4.13! that is important
and so we predict the same critical singularities as found
the q350 case described above. In particular, the la
thicknesŝ l &3 is given by Eq.~4.19! andn i

35`.

B. Regime II: Intermediate fluctuations

The second regime is given whenl is restricted such tha
2vt, l ,4vt. In this regime, the interface potential is

W(t)~ l !'t̃@12q1~ l 22vt !#e(21v)t2 l1
K~ l /2vt !

At
e2t2 l 2/4vt,

~4.25!

whereA4pvK(x)51/(22x)@12q3 /(22x)#1c/x. For q3
50 it is sufficient to considerK( l /2vt)'K constant in order
to find the leading order critical behavior. The minimum a
curvature matching formulas~4.1! and ~4.2! yield

2 t̃@12q1~ l †22vt†21!#

5
Kl †

2vt†3/2
exp@2~ l †22vt†!2/4vt†# ~4.26!

and

exp@ l †2~21vt†!#S`

't̃@12q1~ l †22vt†22!#1
K

2vt†3/2F l †2

2vt†
21G

3exp@2~ l †22vt†!2/4vt†#. ~4.27!

Solving these equations for larget reveals that for transitions
associated with vanishingt̃ one hasl †'A8vt†, while q1
→0 transitions havel †'(21v)t†. This latter behavior is
also found in regime I since only the first exponential term
required for determining the critical behavior. Thus the
sults of regime II are valid whenever 1/2,v,2.

Associated with these two limits we again identify tw
critical transitions. First, whenu t̃u→0, the thickness diverge
as

^ l &* '
A8v

~A22Av!2
lnF 1

u t̃u
G , ~4.28!

with leading order corrections ofO„ln@ln(ut̃ u)#…. We further
find
4-10
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j i* ;H u t̃uF lnS 1

u t̃u
D G Av/8

3F12
2Avq1

A22Av
lnS 1

u t̃u
D G Av/2J 21/(A22Av)2

,

~4.29!

and thusn i* 51/(A22Av)2 in agreement with standard crit
cal wetting results for regime II@19#. For the other critical
transition 3 we recall from above that the dominant singu
behavior is determined from the first exponential term in
renormalized potential, and hence the basic results of reg
I, i.e., Eqs.~4.19! and ~4.20!, also apply in the present re
gime.

In addition to the critical transitions we still have a firs
order transition forq1.0 andt̃,0 such that the topology o
the phase diagram forq350 is identical to Fig. 2~a!. For
completeness we note that upon settingFs5e22t†W(t†)( l †)
to zero we identify the loci of the first-order phase bound
as

t̃0;2
1

q1
exp@2~A2/v21!/2q1#, ~4.30!

for small q1, in this regime.
For q3,0 the critical behavior is qualitatively unchange

since, as can be seen from Eq.~4.25!, theq3 contribution is
always positive in this regime and can be incorporated i
the constantK when determining leading order behavior.

For q3.0 the phase behavior is very rich with two di
ferent scenarios dependent upon the magnitude ofq3. The
crossover occurs whenq35Q3(v) where

Q3~v!5A2

v
@11~A2v21!c#~A2v21!, ~4.31!

and the presence of the wall strengthc indicates that results
in this regime will depend quantitatively on the treatment
the wall restriction. Whenq3,Q3(v) the negative contribu-
tion to the second exponential is insufficient to destabil
the critical unbinding transition atu t̃u50. Thus the critical
transition remains in this case with leading order critical b
havior described by Eqs.~4.28! and~4.29!. Furthermore, the
origin remains a multicritical point with a first-order pha
boundary in the lower right quadrant of the phase diagr
@see ~4.30!# and the second critical transition3 for q1

50,t̃.0. Hence the phase diagram is qualitatively the sa
as forq350 as shown schematically in Fig. 5~a!.

Conversely, whenq3.Q3(v) the q3 contribution desta-
bilizes the* transition with the phase transition being drive
first order. Forq1<0 the transition boundary is shifted int
the positivet̃ region of the phase diagram and terminates
the q150 axis at the pointP where
01160
e
e
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o

f
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e

n

t̃;expS 2
3~A22Av!2

2A8v

1

q32Q3
lnF 1

q32Q3
G D .

~4.32!

For q1.0 the phase boundary for the fluctuation-induc
first-order unbinding transition smoothly connects with t
usual first-order boundary as shown schematically in F
5~b!. When q1 /q3&1 there is no unbinding transition fo
fixed q1, while for larger fixedq1 we have reentrant behav
ior.

C. Regime III: Strong fluctuations

The final fluctuation regime is given forl ,2vt. In this
case all the parts of the renormalized potential take the fo
of Gaussians with

W(t)~ l !'
K̄~ l /2vt !

A4pvt
e2t2 l 2/4vt, ~4.33!

FIG. 5. Schematic renormalized (t̃,q1) phase diagrams in re
gime II for the cases~a! q3,Q3(v) and ~b! q3.Q3(v). The loci
of critical unbinding transitions are given by the dotted lines, w
the superscripts indicating the two essentially different types
transition. Thick lines represent the first-order transition ph
boundaries. The dashed lines correspond to the metastability li
of the unbound state, andP identifies the critical end point de
scribed in the main text.
4-11
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where K̄(x)5 t̃/(12x)@12q1 /(12x)#11/(22x)@1
2q3 /(22x)#1c/x. Identifying l † andt† using the matching
requirements~4.1! and ~4.2! reveals that the ansatzl ,2vt
corresponds to the restrictionv.2 that defines regime III.
The best estimates for the capillary parameter suggesv
'0.75@Refs.@29–31## and so we do not expect regime III t
be relevant for comparison with Monte Carlo simulati
studies. Hence we forgo a detailed derivation of the ph
diagram in this regime and simply describe the main f
tures.

The overall phase diagram is topologically the same a
regime II although the precise location of the phase bou
aries are modified. Once again there is a crossover v
Q̄3(v) such that forq3,Q̄3 the * transition remains critica
and forq3.Q̄3 the transition is fluctuation-induced first o
der. In the first case the phase boundary is shifted from
t̃50 axis, further the3 transition phase boundary is als
shifted from theq150 axis and where the two transitio
lines meet there is a multicritical point from which a firs
order phase boundary emerges. For both of the critical t
sitions we identify exponential growth for the parallel corr
lation length son* 5n35`. For q3.Q̄3 the phase diagram
is similar to Fig. 5~b! although the critical transition line is
slightly shifted from theq150 axis. Crucially there are stil
two disconnected regions of unbounded phase as show
the figure.

V. RENORMALIZED SURFACE PHASE DIAGRAM

The RG analysis of the previous sections has dem
strated that fluctuation effects will strongly modify the mea
field predictions for phase behavior with the position dep
dence of the stiffness and rigidity being of vital importanc
In this section we wish to understand how this modified
havior in the space oft̃, q1, and q3 can be interpreted in
terms of the surface parameters, and in particular how a t
cal mean-field surface phase diagram as exemplified in
1, will change under renormalization. To do this we mu
first determine the dependence ofq1 andq3 upon the surface
parameters, most notably the surface fieldms and enhance-
ment vs , in the critical regime. Second, we must consid
the issue of renormalization effects upon the bare first-or
transition shown in Fig. 1.

To address the first of these issues we note from Eq.~3.3!
that q3 /q1 can be written in terms of the stiffness and rigi
ity coefficientss2 , s6 , k2, andk6. We further observe from
explicit calculation within the triple parabola model that
each case the stiffness contribution dominates over the ri
ity one such thatq3 /q1's6 /s2. Both of the contributionss2
and s6 are strictly positive near the critical transition. Co
sequently, only the results of the RG analysis for positiveq1
andq3 are relevant in determining the renormalization of t
critical boundary. We restrict our attention in this section
v,2 ~i.e., regimes I and II! as seems reasonable for com
parison with simulations. For these cases we see from
last section that ifq1*q3 we predict reentrant behavio
crossing two first-order transition boundaries ast̃ is varied.
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However, whenq1 is significantly smaller thanq3 there is no
transition and the interface is always predicted to be bou
Recallt̃ is simply a measure of the deviation from the mea
field critical wetting phase boundary so varyingt̃ explores
the vicinity of the mean-field transition boundary in the su
face phase diagram. For concreteness we consider a
value ofumsu and explore the phase diagram by varyingvs in
order to determine whether the interface remains bound
undergoes a reentrant transition to the unbound state we
identify whether or notq3 will exceed the value ofq1. We
have determined this numerically within the triple parabo
model. The value ofq3 is found to increase in the vicinity o
t̃50 asumsu is increased. In contrastq1 rapidly decreases a
umsu is increased. Thus asumsu→` the ratioq3 /q1→` so
that for sufficiently large~fixed! umsu there will be no transi-
tion and the interface will always be bound. For smaller fix
umsu but still in the mean-field critical region one may cro
two transition lines enclosing a region representing an
bound interface asvs is varied. We remark that the ‘‘renor
malization’’ of q1 due to the inclusion of a nonzeroq2 term
discussed in Sec. III does not effect the above conclus
sinceq2 is found to have the same qualitative behavior asq1.

To complete the renormalized phase diagram we m
explore the effect of fluctuations on the mean-field first-ord
phase boundary. This may be achieved in much the s
way as we examined the critical transition in earlier sectio
with a slightly different modified bare potential. Near th
first-order transition, the coefficientw020 in the expansion
~2.2! for the potential is negative and so it is necessary
take the next order term into account. Furthermore, the
efficientss020 ands021 in the stiffness expansion~2.3!, along
with the corresponding coefficients in Eq.~2.4! for the rigid-
ity, will both change sign at the tricritical point in Fig. 1
Thus, instead of Eq.~3.5!, we need to consider the following
modified bare potential

W̃(0)~ l !5 t̃~12q1l !e2 l1~q3l 2r !e22l1se23l , ~5.1!

with t̃, q1 , q3, and r as before@see Eq.~3.3!#, while s
5w1101c1s1101c2k110.0. In this formulation the final two
terms~i.e., re22l andse23l) are only required to ensure tha
l 50 is not incorrectly identified as a boundary minimum
the potential. As in Sec. III, we can gauge the effect of flu
tuations by performing a mean-field-like study of this pote
tial. The role played byq1 is again intriguing, since it
changes the sign of the leading order term in the poten
By minimizing Eq. ~5.1! it is straightforward to identify a
second-order unbinding transition ast̃→01, which we may
interpret as a fluctuation-induced critical transition. By fu
ther decreasingt̃, the interface becomes bound again a
first-order transition, pointing to reentrant behavior, comp
ible with the aforementioned results for the bare critical tra
sition. These results are also found from the fully lineariz
RG study in regimes I and II, where in each case the div
gence ofl at the second-order transition is identical to th
found for the* transition in the relevant regime.

Thus combining all of our results yields a renormaliz
surface phase diagram as depicted in Fig. 6. We observe
4-12
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the unbound state is stable only in a limited region of
diagram and that it is no longer the case that unbinding tr
sitions are found for all values of the surface paramet
Note that the original large unbound region in the highumsu
regime of Fig. 1 has become a region of bound states, w
is directly attributable to the presence of theq1 term in the
renormalized potentials. The phase transition lines that
the borders of the unbound region in Fig. 6 follow from t
renormalization of the mean-field phase boundaries as
lined above. We distinguish a critical transition CW~dashed
line! and a first-order transition FW~solid line! merging at a
tricritical point. In regime I the TCP is located at the sam
position as the TCP in the mean-field phase diagra
whereas in regime II it may shift depending on whether
not q3.Q3 @see Eq.~4.31!# near the mean-field TCP. Ou
calculation is insufficient to provide a quantitative meas
of the width of the unbound region in the surface phase d
gram although we anticipate it is rather narrow. More imp
tantly there is no longer a prescriptive route for finding t
unbinding transition in the system once fluctuation effe
have been included. For example, if in a given system
find the interface is in a bound state, it is not certain that
varying the surface field, say, that we could induce an
binding transition. Even if it is possible we would not be ab
to deducea priori whether the field should be increased
decreased. Hence we believe that the opportunity for obs
ing an unbinding transition is severely reduced due to fl
tuation effects.

VI. CONCLUSIONS

In this paper we have analyzed the effect of fluctuatio
upon the unbinding of a water-microemulsion interface fro
a substrate in a confined complex fluid. At mean-field le
such a transition is predicted for all values of the surfa
parameters as shown in Fig. 1; in particular, for any giv
enhancement a transition can be induced by varying the
face field. We have demonstrated that this isnot generally

FIG. 6. Schematic phase diagram for the unbinding of a w
microemulsion interface including the effect of fluctuations. T
unbound state is stable only in a narrow region confined by crit
~dotted! and first-order~solid! phase transition lines. The filled
circle indicates the tricritical point~TCP!.
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true beyond mean-field due to the presence of positi
dependent contributions in the interfacial stiffness and rig
ity. A detailed RG analysis reveals that the surface ph
diagram is dramatically revised due to fluctuations, with F
1 being replaced by Fig. 6. Most notably the unbound reg
in the phase diagram is rather limited and so any observa
of the unbinding transition would require a fine tuning of t
surface parameters. Furthermore, for a given surface
hancement it is no longer guaranteed that we could induc
transition by varying the surface fieldumsu. As a consequence
we believe that the observation of such a transition in a sim
lation would prove problematic and thus suggest that t
system would be a poor candidate for observing the p
dicted nonuniversal critical exponents associated with
binding @19#.

We comment that the effect of the position-depend
contributions in the gradient coefficients is significantly d
ferent to the previously predicted stiffness instability mech
nism for fluids@15,21#. In that case a second-order transitio
is destabilized by new next-to-leading-order terms in
renormalized interface potential. In the present case it is
leading order term that is modified, yielding the drama
changes in phase behavior described above. It is opportu
this stage to comment that recent extensions to interf
modeling for simple fluids could also be applied to terna
mixtures and can be relevant if one is interested in extend
the analysis beyond the calculation of the phase diagram
particular, when considering a complete unbinding transit
it may be appropriate to derive a two-field interface mod
incorporating one interface that remains bound to the w
and one that unbinds in the limit of the transition@32#. This
extended model would contain both a stiffness matrix fam
iar from simple fluids and a curvature matrix. An interesti
line of future research would be to examine whether o
finds a connection between these matrices and the f
energy, analogous to the stiffness matrix–free-energy r
tion of simple fluids@33,34#.

Finally, we note that the RG results described in Secs.
and IV are very general and so this analysis is expected t
applicable to a range of unbinding behavior in ternary m
tures. The overall results will depend sensitively on the s
of the coefficientsq1 , q3, etc., appearing in the modifie
bare potential@see Eq.~3.4!#. For example a bare critica
transition is predicted to remain continuous ifq1 andq3 are
negative, very different to the behavior in our specific syst
whereq1 andq3 are both positive. Thus while we have dem
onstrated that the unbinding of the water-microemulsion
terface from a substrate is inhibited due to fluctuation effe
the same RG analysis may support mean-field predictions
other unbinding transitions.
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APPENDIX: GENERAL SOLUTION OF THE RG FLOW
EQUATIONS

In this Appendix we show how the RG flow equation
~2.14!–~2.17! can be solved in closed form for general d
mensiond.

l-

l
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To start, it is convenient to note that we can decouple
set of partial differential equations by defining

U (t)~ l !5W(t)~ l !1 f 1~ t !DS (t)~ l !1 f 2~ t !Dk (t)~ l !,
~A1!

where the functionsf 1(t) and f 2(t) are given by

f 1~ t !52VL2e(d21)E
0

t

ds
e2(d21)s

S`1k`L2e22s
~A2!

and

f 2~ t !52VL4e(d11)E
0

t

ds
e2(d11)s

S`1k`L2e22s
. ~A3!

With these definitionsU (t)( l ) satisfies the equation

]U (t)~ l !

]t
5~d21!U (t)~ l !1z l

]U (t)~ l !

] l

1
V

S`1k`L2e22t

]2U (t)~ l !

] l 2
. ~A4!

This equation is analogous to the original wall-potential flo
equation solved by Fisher and Huse@19#, thus we may
readily identify the solution

U (t)~ l !5
e(d21)t

A2pg~ t !
E

2`

`

dl8U (0)~ l 8!expF2
~eztl 2 l 8!2

2g2~ t !
G .

~A5!

The width of the convolutiong(t) is given by

g2~ t !52E
0

t

ds
Ve2zs

S`1k`L2e22s
. ~A6!
l

01160
eIt is also evident that the solutions for the stiffness and
rigidity will have similar forms @compare Eqs.~2.14! and
~2.15! to ~A4!#. All we need to do is replaceU by DS or Dk,
andd21 by 0 or22, respectively. Thus, the solutions rea

DS (t)~ l !5
1

A2pg~ t !
E

2`

`

dl8DS (0)~ l 8!expF2
~eztl 2 l 8!2

2g2~ t !
G

~A7!

and

Dk (t)~ l !5
e22t

A2pg~ t !
E

2`

`

dl8Dk (0)~ l 8!expF2
~eztl 2 l 8!2

2g2~ t !
G .

~A8!

It is now straightforward to find the solution for the bind
ing potential since W(t)( l )5U (t)( l )2 f 1(t)DS (t)( l )
2 f 2(t)Dk (t)( l ) from Eq. ~A1!. Thus

W(t)~ l !5
e(d21)t

A2pg~ t !
E

2`

`

dl8W̃(0)~ l 8!expF2
~eztl 2 l 8!2

2g2~ t !
G ,

~A9!

where the initial potential is

W̃(0)~ l !5W(0)~ l !2 f 1~ t !e2(d21)tDS (0)~ l !

2 f 2~ t !e2(d11)tDk (0)~ l !. ~A10!

In d53 we may explicitly solve the integrals~A2! and~A3!
so that Eq.~A10! reduces to Eq.~2.22!. Moreover, in three
dimensionsz50 and so Eq.~A9! reduces to Eq.~2.21!.
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